JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Mycobacterium indicus pranii (Mw) re-establishes host protective immune response in Leishmania donovani infected macrophages: critical role of IL-12.
PLoS ONE
Leishmania donovani, a protozoan parasite, causes a strong immunosuppression in a susceptible host and inflicts the fatal disease visceral leishmaniasis. Relatively high toxicity, low therapeutic index, and failure in reinstating host-protective anti-leishmanial immune responses have made anti-leishmanial drugs patient non-compliant and an immuno-modulatory treatment a necessity. Therefore, we have tested the anti-leishmanial efficacy of a combination of a novel immunomodulator, Mycobacterium indicus pranii (Mw), and an anti-leishmanial drug, Amphotericin B (AmpB). We observe that Mw alone or with a suboptimal dose of AmpB offers significant protection against L. donovani infection by activating the macrophages. Our experiments examining the anti-leishmanial activity of Mw alone or with AmpB also indicate a p38MAPK and ERK-1/2 regulated pro-inflammatory responses. The Mw-AmpB combination induced nitric oxide production, restored Th1 response, and significantly reduced parasite burden in wild type macrophages but not in IL-12-deficient macrophages indicating a pivotal role for IL-12 in the induction of host-protection by Mw and AmpB treatments. In addition, we observed that Mw alone or in combination with suboptimal dose of AmpB render protection against L. donovani infection in susceptible BALB/c mice. However, these treatments failed to render protection in IL-12-deficient mice in vivo which added further support that IL-12 played a central role in this chemo immunotherapeutic approach. Thus, we demonstrate a novel chemo-immunotherapeutic approach- Mw and AmpB crosstalk eliminating the parasite-induced immunosuppression and inducing collateral host-protective effects.
ABSTRACT
Leishmaniasis is one of the world's most neglected diseases, largely affecting the poorest of the poor, mainly in developing countries. Over 350 million people are considered at risk of contracting leishmaniasis, and approximately 2 million new cases occur yearly1. Leishmania donovani is the causative agent for visceral leishmaniasis (VL), the most fatal form of the disease. The choice of drugs available to treat leishmaniasis is limited 2;current treatments provide limited efficacy and many are toxic at therapeutic doses. In addition, most of the first line treatment drugs have already lost their utility due to increasing multiple drug resistance 3. The current pipeline of anti-leishmanial drugs is also severely depleted. Sustained efforts are needed to enrich a new anti-leishmanial drug discovery pipeline, and this endeavor relies on the availability of suitable in vitro screening models. In vitro promastigotes 4 and axenic amastigotes assays5 are primarily used for anti-leishmanial drug screening however, may not be appropriate due to significant cellular, physiological, biochemical and molecular differences in comparison to intracellular amastigotes. Assays with macrophage-amastigotes models are considered closest to the pathophysiological conditions of leishmaniasis, and are therefore the most appropriate for in vitro screening. Differentiated, non-dividing human acute monocytic leukemia cells (THP1) (make an attractive) alternative to isolated primary macrophages and can be used for assaying anti-leishmanial activity of different compounds against intracellular amastigotes. Here, we present a parasite-rescue and transformation assay with differentiated THP1 cells infected in vitro with Leishmania donovani for screening pure compounds and natural products extracts and determining the efficacy against the intracellular Leishmania amastigotes. The assay involves the following steps: (1) differentiation of THP1 cells to non-dividing macrophages, (2) infection of macrophages with L. donovani metacyclic promastigotes, (3) treatment of infected cells with test drugs, (4) controlled lysis of infected macrophages, (5) release/rescue of amastigotes and (6) transformation of live amastigotes to promastigotes. The assay was optimized using detergent treatment for controlled lysis of Leishmania-infected THP1 cells to achieve almost complete rescue of viable intracellular amastigotes with minimal effect on their ability to transform to promastigotes. Different macrophage:promastigotes ratios were tested to achieve maximum infection. Quantification of the infection was performed through transformation of live, rescued Leishmania amastigotes to promastigotes and evaluation of their growth by an alamarBlue fluorometric assay in 96-well microplates. This assay is comparable to the currently-used microscopic, transgenic reporter gene and digital-image analysis assays. This assay is robust and measures only the live intracellular amastigotes compared to reporter gene and image analysis assays, which may not differentiate between live and dead amastigotes. Also, the assay has been validated with a current panel of anti-leishmanial drugs and has been successfully applied to large-scale screening of pure compounds and a library of natural products fractions (Tekwani et al. unpublished).
22 Related JoVE Articles!
Play Button
In vivo Imaging of Transgenic Leishmania Parasites in a Live Host
Authors: Colin J. Thalhofer, Joel W. Graff, Laurie Love-Homan, Suzanne M. Hickerson, Noah Craft, Stephen M. Beverley, Mary E. Wilson.
Institutions: University of Iowa, and the VA Medical Center, University of Iowa, and the VA Medical Center, University of Iowa, Washington University School of Medicine, Harbor-UCLA Medical Center, Hanley-Hardison Research Center, Iowa City VA Medical Center, University of Iowa.
Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection. Parasite loads are then measured either by microscopy, limiting dilution assay, or qPCR amplification of parasite DNA. The in vivo imaging system (IVIS) has an integrated software package that allows the detection of a bioluminescent signal associated with cells in living organisms. Both to minimize animal usage and to follow infection longitudinally in individuals, in vivo models for imaging Leishmania spp. causing VL or CL were established. Parasites were engineered to express luciferase, and these were introduced into mice either intradermally or intravenously. Quantitative measurements of the luciferase driving bioluminescence of the transgenic Leishmania parasites within the mouse were made using IVIS. Individual mice can be imaged multiple times during longitudinal studies, allowing us to assess the inter-animal variation in the initial experimental parasite inocula, and to assess the multiplication of parasites in mouse tissues. Parasites are detected with high sensitivity in cutaneous locations. Although it is very likely that the signal (photons/second/parasite) is lower in deeper visceral organs than the skin, but quantitative comparisons of signals in superficial versus deep sites have not been done. It is possible that parasite numbers between body sites cannot be directly compared, although parasite loads in the same tissues can be compared between mice. Examples of one visceralizing species (L. infantum chagasi) and one species causing cutaneous leishmaniasis (L. mexicana) are shown. The IVIS procedure can be used for monitoring and analyzing small animal models of a wide variety of Leishmania species causing the different forms of human leishmaniasis.
Microbiology, Issue 41, IVIS, Leishmania, in vivo imaging, parasite, transgenic, bioluminescence, luciferase, cutaneous leishmaniasis, visceral leishmaniasis
1980
Play Button
Cutaneous Leishmaniasis in the Dorsal Skin of Hamsters: a Useful Model for the Screening of Antileishmanial Drugs
Authors: Sara M. Robledo, Lina M. Carrillo, Alejandro Daza, Adriana M. Restrepo, Diana L. Muñoz, Jairo Tobón, Javier D. Murillo, Anderson López, Carolina Ríos, Carol V. Mesa, Yulieth A. Upegui, Alejandro Valencia-Tobón, Karina Mondragón-Shem, Berardo RodrÍguez, Iván D. Vélez.
Institutions: University of Antioquia, University of Antioquia.
Traditionally, hamsters are experimentally inoculated in the snout or the footpad. However in these sites an ulcer not always occurs, measurement of lesion size is a hard procedure and animals show difficulty to eat, breathe and move because of the lesion. In order to optimize the hamster model for cutaneous leishmaniasis, young adult male and female golden hamsters (Mesocricetus auratus) were injected intradermally at the dorsal skin with 1 to 1.5 x l07 promastigotes of Leishmania species and progression of subsequent lesions were evaluated for up to 16 weeks post infection. The golden hamster was selected because it is considered the adequate bio-model to evaluate drugs against Leishmania as they are susceptible to infection by different species. Cutaneous infection of hamsters results in chronic but controlled lesions, and a clinical evolution with signs similar to those observed in humans. Therefore, the establishment of the extent of infection by measuring the size of the lesion according to the area of indurations and ulcers is feasible. This approach has proven its versatility and easy management during inoculation, follow up and characterization of typical lesions (ulcers), application of treatments through different ways and obtaining of clinical samples after different treatments. By using this method the quality of animal life regarding locomotion, search for food and water, play and social activities is also preserved.
Immunology, Issue 62, Cutaneous leishmaniasis, hamster, Leishmania, antileishmanial drugs
3533
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
50561
Play Button
Using Eggs from Schistosoma mansoni as an In vivo Model of Helminth-induced Lung Inflammation
Authors: Karen L. Joyce, Will Morgan, Robert Greenberg, Meera G. Nair.
Institutions: University of Pennsylvania , University of Pennsylvania .
Schistosoma parasites are blood flukes that infect an estimated 200 million people worldwide 1. In chronic infection with Schistosoma, the severe pathology, including liver fibrosis and splenomegaly, is caused by the immune response to the parasite eggs rather than the parasite itself 2. Parasite eggs induce a Th2 response characterized by the production of IL-4, IL-5 and IL-13, the alternative activation of macrophages and the recruitment of eosinophils. Here, we describe injection of Schistosoma mansoni eggs as a model to examine parasite-specific Th2 cytokine responses in the lung and draining lymph nodes, the formation of pulmonary granulomas surrounding the egg, and airway inflammation. Following intraperitoneal sensitization and intravenous challenge, S. mansoni eggs are transported to the lung via the pulmonary arteries where they are trapped within the lung parenchyma by granulomas composed of lymphocytes, eosinophils and alternatively activated macrophages 3-6. Associated with granuloma formation, inflammation in the broncho-alveolar spaces, expansion of the draining lymph nodes and CD4 T cell activation can be observed. Here we detail the protocol for isolating Schistosoma mansoni eggs from infected livers (modified from 7), sensitizing and challenging mice, and recovering the organs (broncho-alveolar lavage (BAL), lung and draining lymph nodes) for analysis. We also include representative histologic and immunologic data and suggestions for additional immunologic analysis. Overall, this method provides an in vivo model to investigate helminth-induced immunologic responses in the lung, which is broadly applicable to the study of Th2 inflammatory diseases including helminth infection, fibrotic diseases, allergic inflammation and asthma. Advantages of this model for the study of type 2 inflammation in the lung include the reproducibility of a potent Th2 inflammatory response in the lung and draining lymph nodes, the ease of assessment of inflammation by histologic examination of the granulomas surrounding the egg, and the potential for long-term storage of the parasite eggs.
Immunology, Issue 64, Infection, Microbiology, helminth, parasite, mouse, Th2, lung, inflammation, granuloma, alternative activation, macrophage
3905
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
2381
Play Button
A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening
Authors: Christophe. J Queval, Ok-Ryul Song, Vincent Delorme, Raffaella Iantomasi, Romain Veyron-Churlet, Nathalie Deboosère, Valérie Landry, Alain Baulard, Priscille Brodin.
Institutions: Université de Lille.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.
Infection, Issue 83, Mycobacterium tuberculosis, High-content/High-throughput screening, chemogenomics, Drug Discovery, siRNA library, automated confocal microscopy, image-based analysis
51114
Play Button
Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens
Authors: Erica L. Benard, Astrid M. van der Sar, Felix Ellett, Graham J. Lieschke, Herman P. Spaink, Annemarie H. Meijer.
Institutions: Leiden University, VU University Medical Center, Monash University.
Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions 1. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage 2, 3. The site of micro-injection of bacteria into the embryo (Figure 1) determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle 4-6. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection 7. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization 8. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.
Immunology, Issue 61, Zebrafish embryo, innate immunity, macrophages, infection, Salmonella, Mycobacterium, micro-injection, fluorescence imaging, Danio rerio
3781
Play Button
Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells
Authors: M. Brittany Johnson, Alison K. Criss.
Institutions: University of Virginia Health Sciences Center.
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells.
Microbiology, Issue 79, Immunology, Infection, Cancer Biology, Genetics, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Microscopy, Confocal, Microscopy, Fluorescence, Bacteria, Bacterial Infections and Mycoses, bacteria, infection, viability, fluorescence microscopy, cell, imaging
50729
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Single Cell Measurements of Vacuolar Rupture Caused by Intracellular Pathogens
Authors: Charlotte Keller, Nora Mellouk, Anne Danckaert, Roxane Simeone, Roland Brosch, Jost Enninga, Alexandre Bobard.
Institutions: Institut Pasteur, Paris, France, Institut Pasteur, Paris, France, Institut Pasteur, Paris, France.
Shigella flexneri are pathogenic bacteria that invade host cells entering into an endocytic vacuole. Subsequently, the rupture of this membrane-enclosed compartment allows bacteria to move within the cytosol, proliferate and further invade neighboring cells. Mycobacterium tuberculosis is phagocytosed by immune cells, and has recently been shown to rupture phagosomal membrane in macrophages. We developed a robust assay for tracking phagosomal membrane disruption after host cell entry of Shigella flexneri or Mycobacterium tuberculosis. The approach makes use of CCF4, a FRET reporter sensitive to β-lactamase that equilibrates in the cytosol of host cells. Upon invasion of host cells by bacterial pathogens, the probe remains intact as long as the bacteria reside in membrane-enclosed compartments. After disruption of the vacuole, β-lactamase activity on the surface of the intracellular pathogen cleaves CCF4 instantly leading to a loss of FRET signal and switching its emission spectrum. This robust ratiometric assay yields accurate information about the timing of vacuolar rupture induced by the invading bacteria, and it can be coupled to automated microscopy and image processing by specialized algorithms for the detection of the emission signals of the FRET donor and acceptor. Further, it allows investigating the dynamics of vacuolar disruption elicited by intracellular bacteria in real time in single cells. Finally, it is perfectly suited for high-throughput analysis with a spatio-temporal resolution exceeding previous methods. Here, we provide the experimental details of exemplary protocols for the CCF4 vacuolar rupture assay on HeLa cells and THP-1 macrophages for time-lapse experiments or end points experiments using Shigella flexneri as well as multiple mycobacterial strains such as Mycobacterium marinum, Mycobacterium bovis, and Mycobacterium tuberculosis.
Infection, Issue 76, Infectious Diseases, Immunology, Medicine, Microbiology, Biochemistry, Cellular Biology, Molecular Biology, Pathology, Bacteria, biology (general), life sciences, CCF4-AM, Shigella flexneri, Mycobacterium tuberculosis, vacuolar rupture, fluorescence microscopy, confocal microscopy, pathogens, cell culture
50116
Play Button
The Synergistic Effect of Visible Light and Gentamycin on Pseudomona aeruginosa Microorganisms
Authors: Yana Reznick, Ehud Banin, Anat Lipovsky, Rachel Lubart, Pazit Polak, Zeev Zalevsky.
Institutions: Bar-Ilan University, Bar-Ilan University, Bar-Ilan University, Bar-Ilan University.
Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens1-5. The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region4,6,7. There are also reports of biocidal effect of red and near infra red8 as well as green light9. In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiotics and contains many predicted AcrB/Mex-type RND multidrug efflux systems10. The method utilized free-living stationary phase Gram-negative bacteria (P. aeruginosa strain PAO1), grown in Luria Broth (LB) medium exposed to Q-switched and/or CW lasers with and without the addition of the antibiotic gentamycin. Cell viability was determined at different time points. The obtained results showed that laser treatment alone did not reduce cell viability compared to untreated control and that gentamycin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamycin treatment, however, resulted in a synergistic effect and the viability of P. aeruginosa was reduced by 8 log's. The proposed method can further be implemented via the development of catheter like device capable of injecting an antibiotic solution into the infected organ while simultaneously illuminating the area with light.
Microbiology, Issue 77, Infection, Infectious Diseases, Cellular Biology, Molecular Biology, Biophysics, Chemistry, Biomedical Engineering, Bacteria, Photodynamic therapy, Medical optics, Bacterial viability, Antimicrobial treatment, Laser, Gentamycin, antibiotics, reactive oxygen species, pathogens, microorganisms, cell culture
4370
Play Button
Depletion and Reconstitution of Macrophages in Mice
Authors: Shelley B. Weisser, Nico van Rooijen, Laura M. Sly.
Institutions: University of British Columbia , Vrije Universiteit Amsterdam, University of British Columbia .
Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).
Immunology, Issue 66, Molecular Biology, macrophages, clodronate-containing liposomes, macrophage depletion, macrophage derivation, macrophage reconstitution
4105
Play Button
Trichuris muris Infection: A Model of Type 2 Immunity and Inflammation in the Gut
Authors: Frann Antignano, Sarah C. Mullaly, Kyle Burrows, Colby Zaph.
Institutions: University of British Columbia, University of British Columbia.
Trichuris muris is a natural pathogen of mice and is biologically and antigenically similar to species of Trichuris that infect humans and livestock1. Infective eggs are given by oral gavage, hatch in the distal small intestine, invade the intestinal epithelial cells (IECs) that line the crypts of the cecum and proximal colon and upon maturation the worms release eggs into the environment1. This model is a powerful tool to examine factors that control CD4+ T helper (Th) cell activation as well as changes in the intestinal epithelium. The immune response that occurs in resistant inbred strains, such as C57BL/6 and BALB/c, is characterized by Th2 polarized cytokines (IL-4, IL-5 and IL-13) and expulsion of worms while Th1-associated cytokines (IL-12, IL-18, IFN-γ) promote chronic infections in genetically susceptible AKR/J mice2-6. Th2 cytokines promote physiological changes in the intestinal microenvironment including rapid turnover of IECs, goblet cell differentiation, recruitment and changes in epithelial permeability and smooth muscle contraction, all of which have been implicated in worm expulsion7-15. Here we detail a protocol for propagating Trichuris muris eggs which can be used in subsequent experiments. We also provide a sample experimental harvest with suggestions for post-infection analysis. Overall, this protocol will provide researchers with the basic tools to perform a Trichuris muris mouse infection model which can be used to address questions pertaining to Th proclivity in the gastrointestinal tract as well as immune effector functions of IECs.
Infection, Issue 51, Trichuris muris, mouse, Th2, intestine, inflammation
2774
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
52036
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
51556
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Isolation of Mouse Peritoneal Cavity Cells
Authors: Avijit Ray, Bonnie N. Dittel.
Institutions: Blood Research Institute.
The peritoneal cavity is a membrane-bound and fluid-filled abdominal cavity of mammals, which contains the liver, spleen, most of the gastro-intestinal tract and other viscera. It harbors a number of immune cells including macrophages, B cells and T cells. The presence of a high number of naïve macrophages in the peritoneal cavity makes it a preferred site for the collection of naïve tissue resident macrophages (1). The peritoneal cavity is also important to the study of B cells because of the presence of a unique peritoneal cavity-resident B cell subset known as B1 cells in addition to conventional B2 cells. B1 cells are subdivided into B1a and B1b cells, which can be distinguished by the surface expression of CD11b and CD5. B1 cells are an important source of natural IgM providing early protection from a variety of pathogens (2-4). These cells are autoreactive in nature (5), but how they are controlled to prevent autoimmunity is still not understood completely. On the contrary, CD5+ B1a cells possess some regulatory properties by virtue of their IL-10 producing capacity (6). Therefore, peritoneal cavity B1 cells are an interesting cell population to study because of their diverse function and many unaddressed questions associated with their development and regulation. The isolation of peritoneal cavity resident immune cells is tricky because of the lack of a defined structure inside the peritoneal cavity. Our protocol will describe a procedure for obtaining viable immune cells from the peritoneal cavity of mice, which then can be used for phenotypic analysis by flow cytometry and for different biochemical and immunological assays.
JoVE Immunology, Issue 35, Immune cells, Peritoneal cavity, Macrophage, B cell, B1 cell, isolation procedure
1488
Play Button
Whole-cell MALDI-TOF Mass Spectrometry is an Accurate and Rapid Method to Analyze Different Modes of Macrophage Activation
Authors: Richard Ouedraogo, Aurélie Daumas, Christian Capo, Jean-Louis Mege, Julien Textoris.
Institutions: Aix Marseille Université, Hôpital de la Timone.
MALDI-TOF is an extensively used mass spectrometry technique in chemistry and biochemistry. It has been also applied in medicine to identify molecules and biomarkers. Recently, it has been used in microbiology for the routine identification of bacteria grown from clinical samples, without preparation or fractionation steps. We and others have applied this whole-cell MALDI-TOF mass spectrometry technique successfully to eukaryotic cells. Current applications range from cell type identification to quality control assessment of cell culture and diagnostic applications. Here, we describe its use to explore the various polarization phenotypes of macrophages in response to cytokines or heat-killed bacteria. It allowed the identification of macrophage-specific fingerprints that are representative of the diversity of proteomic responses of macrophages. This application illustrates the accuracy and simplicity of the method. The protocol we described here may be useful for studying the immune host response in pathological conditions or may be extended to wider diagnostic applications.
Immunology, Issue 82, MALDI-TOF, mass spectrometry, fingerprint, Macrophages, activation, IFN-g, TNF, LPS, IL-4, bacterial pathogens
50926
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.