JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Factors affecting hatch success of hawksbill sea turtles on Long Island, Antigua, West Indies.
Current understanding of the factors influencing hawksbill sea turtle (Eretmochelys imbricata) hatch success is disparate and based on relatively short-term studies or limited sample sizes. Because global populations of hawksbills are heavily depleted, evaluating the parameters that impact hatch success is important to their conservation and recovery. Here, we use data collected by the Jumby Bay Hawksbill Project (JBHP) to investigate hatch success. The JBHP implements saturation tagging protocols to study a hawksbill rookery in Antigua, West Indies. Habitat data, which reflect the varied nesting beaches, are collected at egg deposition, and nest contents are exhumed and categorized post-emergence. We analyzed hatch success using mixed-model analyses with explanatory and predictive datasets. We incorporated a random effect for turtle identity and evaluated environmental, temporal and individual-based reproductive variables. Hatch success averaged 78.6% (SD: 21.2%) during the study period. Highly supported models included multiple covariates, including distance to vegetation, deposition date, individual intra-seasonal nest number, clutch size, organic content, and sand grain size. Nests located in open sand were predicted to produce 10.4 more viable hatchlings per clutch than nests located >1.5 m into vegetation. For an individual first nesting in early July, the fourth nest of the season yielded 13.2 more viable hatchlings than the initial clutch. Generalized beach section and inter-annual variation were also supported in our explanatory dataset, suggesting that gaps remain in our understanding of hatch success. Our findings illustrate that evaluating hatch success is a complex process, involving multiple environmental and individual variables. Although distance to vegetation and hatch success were inversely related, vegetation is an important component of hawksbill nesting habitat, and a more complete assessment of the impacts of specific vegetation types on hatch success and hatchling sex ratios is needed. Future research should explore the roles of sand structure, nest moisture, and local weather conditions.
Authors: Iris Adam, Constance Scharff, Mariam Honarmand.
Published: 05-24-2014
Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines.
24 Related JoVE Articles!
Play Button
Generation of Transgenic Hydra by Embryo Microinjection
Authors: Celina E. Juliano, Haifan Lin, Robert E. Steele.
Institutions: Yale University School of Medicine, University of California, Irvine.
As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology1. Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.
Molecular Biology, Issue 91, Hydra, transgenic, microinjection, gene overexpression, gene knockdown
Play Button
High and Low Throughput Screens with Root-knot Nematodes Meloidogyne spp.
Authors: Hagop S. Atamian, Philip A. Roberts, Isgouhi Kaloshian.
Institutions: University of California, Riverside .
Root-knot nematodes (genus Meloidogyne) are obligate plant parasites. They are extremely polyphagous and considered one of the most economically important plant parasitic nematodes. The microscopic second-stage juvenile (J2), molted once in the egg, is the infective stage. The J2s hatch from the eggs, move freely in the soil within a film of water, and locate root tips of suitable plant species. After penetrating the plant root, they migrate towards the vascular cylinder where they establish a feeding site and initiate feeding using their stylets. The multicellular feeding site is comprised of several enlarged multinuclear cells called 'giant cells' which are formed from cells that underwent karyokinesis (repeated mitosis) without cytokinesis. Neighboring pericycle cells divide and enlarge in size giving rise to a typical gall or root knot, the characteristic symptom of root-knot nematode infection. Once feeding is initiated, J2s become sedentary and undergo three additional molts to become adults. The adult female lays 150-250 eggs in a gelatinous matrix on or below the surface of the root. From the eggs new infective J2s hatch and start a new cycle. The root-knot nematode life cycle is completed in 4-6 weeks at 26-28°C. Here we present the traditional protocol to infect plants, grown in pots, with root-knot nematodes and two methods for high-throughput assays. The first high-throughput method is used for plants with small seeds such as tomato while the second is for plants with large seeds such as cowpea and common bean. Large seeds support extended seedling growth with minimal nutrient supplement. The first high throughput assay utilizes seedlings grown in sand in trays while in the second assay plants are grown in pouches in the absence of soil. The seedling growth pouch is made of a 15.5 x 12.5cm paper wick, folded at the top to form a 2-cm-deep trough in which the seed or seedling is placed. The paper wick is contained inside a transparent plastic pouch. These growth pouches allow direct observation of nematode infection symptoms, galling of roots and egg mass production, under the surface of a transparent pouch. Both methods allow the use of the screened plants, after phenotyping, for crossing or seed production. An additional advantage of the use of growth pouches is the small space requirement because pouches are stored in plastic hanging folders arranged in racks.
Immunology, Issue 61, Cowpea, Meloidogyne, root infection, root-knot nematodes, tomato, seedling growth pouches
Play Button
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals
Authors: Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.
Environmental Sciences, Issue 91, Serial block face imaging, two-photon fluorescence microscopy, Montastraea annularis, Montastraea faveolata, 3D coral tissue morphology and structure, zooxanthellae, chromatophore, autofluorescence, light harvesting optimization, environmental change
Play Button
Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction
Authors: Avdesh Avdesh, Mengqi Chen, Mathew T. Martin-Iverson, Alinda Mondal, Daniel Ong, Stephanie Rainey-Smith, Kevin Taddei, Michael Lardelli, David M. Groth, Giuseppe Verdile, Ralph N. Martins.
Institutions: Edith Cowan University, Graylands Hospital, University of Western Australia, McCusker Alzheimer's Research foundation, University of Western Australia , University of Adelaide, Curtin University of Technology, University of Western Australia .
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.
Basic Protocols, Issue 69, Biology, Marine Biology, Zebrafish, Danio rerio, maintenance, breeding, feeding, raising, larvae, animal model, aquarium
Play Button
Isolation of Microvascular Endothelial Tubes from Mouse Resistance Arteries
Authors: Matthew J. Socha, Steven S. Segal.
Institutions: University of Missouri, Dalton Cardiovascular Research Center.
The control of blood flow by the resistance vasculature regulates the supply of oxygen and nutrients concomitant with the removal of metabolic by-products, as exemplified by exercising skeletal muscle. Endothelial cells (ECs) line the intima of all resistance vessels and serve a key role in controlling diameter (e.g. endothelium-dependent vasodilation) and, thereby, the magnitude and distribution of tissue blood flow. The regulation of vascular resistance by ECs is effected by intracellular Ca2+ signaling, which leads to production of diffusible autacoids (e.g. nitric oxide and arachidonic acid metabolites)1-3 and hyperpolarization4,5 that elicit smooth muscle cell relaxation. Thus understanding the dynamics of endothelial Ca2+ signaling is a key step towards understanding mechanisms governing blood flow control. Isolating endothelial tubes eliminates confounding variables associated with blood in the vessel lumen and with surrounding smooth muscle cells and perivascular nerves, which otherwise influence EC structure and function. Here we present the isolation of endothelial tubes from the superior epigastric artery (SEA) using a protocol optimized for this vessel. To isolate endothelial tubes from an anesthetized mouse, the SEA is ligated in situ to maintain blood within the vessel lumen (to facilitate visualizing it during dissection), and the entire sheet of abdominal muscle is excised. The SEA is dissected free from surrounding skeletal muscle fibers and connective tissue, blood is flushed from the lumen, and mild enzymatic digestion is performed to enable removal of adventitia, nerves and smooth muscle cells using gentle trituration. These freshly-isolated preparations of intact endothelium retain their native morphology, with individual ECs remaining functionally coupled to one another, able to transfer chemical and electrical signals intercellularly through gap junctions6,7. In addition to providing new insight into calcium signaling and membrane biophysics, these preparations enable molecular studies of gene expression and protein localization within native microvascular endothelium.
Basic Protocol, Issue 81, endothelial tubes, microcirculation, calcium signaling, resistance vasculature, Confocal microscopy
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
High Throughput Microinjections of Sea Urchin Zygotes
Authors: Nadezda A. Stepicheva, Jia L. Song.
Institutions: University of Delaware .
Microinjection into cells and embryos is a common technique that is used to study a wide range of biological processes. In this method a small amount of treatment solution is loaded into a microinjection needle that is used to physically inject individual immobilized cells or embryos. Despite the need for initial training to perform this procedure for high-throughput delivery, microinjection offers maximum efficiency and reproducible delivery of a wide variety of treatment solutions (including complex mixtures of samples) into cells, eggs or embryos. Applications to microinjections include delivery of DNA constructs, mRNAs, recombinant proteins, gain of function, and loss of function reagents. Fluorescent or colorimetric dye is added to the injected solution to enable instant visualization of efficient delivery as well as a tool for reliable normalization of the amount of the delivered solution. The described method enables microinjection of 100-400 sea urchin zygotes within 10-15 min.
Developmental Biology, Issue 83, Sea Urchins, microinjection, sea urchin embryos, treatment delivery, high throughput, mouth pipette, DNA constructs, mRNAs, morpholino antisense oligonucleotides
Play Button
Cell Co-culture Patterning Using Aqueous Two-phase Systems
Authors: John P. Frampton, Joshua B. White, Abin T. Abraham, Shuichi Takayama.
Institutions: University of Michigan , University of Michigan .
Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type.
Bioengineering, Issue 73, Biomedical Engineering, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Biotechnology, Cell Migration Assays, Culture Techniques, bioengineering (general), Patterning, Aqueous Two-Phase System, Co-Culture, cell, Dextran, Polyethylene glycol, media, PEG, DEX, colonies, cell culture
Play Button
Isolation of Sensory Neurons of Aplysia californica for Patch Clamp Recordings of Glutamatergic Currents
Authors: Lynne A. Fieber, Stephen L. Carlson, Andrew T. Kempsell, Justin B. Greer, Michael C. Schmale.
Institutions: University of Miami.
The marine gastropod mollusk Aplysia californica has a venerable history as a model of nervous system function, with particular significance in studies of learning and memory. The typical preparations for such studies are ones in which the sensory and motoneurons are left intact in a minimally dissected animal, or a technically elaborate neuronal co-culture of individual sensory and motoneurons. Less common is the isolated neuronal preparation in which small clusters of nominally homogeneous neurons are dissociated into single cells in short term culture. Such isolated cells are useful for the biophysical characterization of ion currents using patch clamp techniques, and targeted modulation of these conductances. A protocol for preparing such cultures is described. The protocol takes advantage of the easily identifiable glutamatergic sensory neurons of the pleural and buccal ganglia, and describes their dissociation and minimal maintenance in culture for several days without serum.
Neuroscience, Issue 77, Neurobiology, Anatomy, Physiology, Cellular Biology, Molecular Biology, Environmental Sciences, Marine Biology, Receptors, Neurophysiology, Neurotransmitter, Neurotransmitter Agents, Patch Clamp Recordings, Primary Cell Culture, Electrophysiology, L-Glutamate, NMDA, D-Aspartate, dissection, ganglia, buccal ganglion, neurons, invertebrate, Aplysia californica, california sea slug, mollusk, animal model
Play Button
Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy
Authors: Esra Güç, Manuel Fankhauser, Amanda W. Lund, Melody A. Swartz, Witold W. Kilarski.
Institutions: École Polytechnique Fédérale de Lausanne, Oregon Health & Science University.
Besides being a physical scaffold to maintain tissue morphology, the extracellular matrix (ECM) is actively involved in regulating cell and tissue function during development and organ homeostasis. It does so by acting via biochemical, biomechanical, and biophysical signaling pathways, such as through the release of bioactive ECM protein fragments, regulating tissue tension, and providing pathways for cell migration. The extracellular matrix of the tumor microenvironment undergoes substantial remodeling, characterized by the degradation, deposition and organization of fibrillar and non-fibrillar matrix proteins. Stromal stiffening of the tumor microenvironment can promote tumor growth and invasion, and cause remodeling of blood and lymphatic vessels. Live imaging of matrix proteins, however, to this point is limited to fibrillar collagens that can be detected by second harmonic generation using multi-photon microscopy, leaving the majority of matrix components largely invisible. Here we describe procedures for tumor inoculation in the thin dorsal ear skin, immunolabeling of extracellular matrix proteins and intravital imaging of the exposed tissue in live mice using epifluorescence and two-photon microscopy. Our intravital imaging method allows for the direct detection of both fibrillar and non-fibrillar matrix proteins in the context of a growing dermal tumor. We show examples of vessel remodeling caused by local matrix contraction. We also found that fibrillar matrix of the tumor detected with the second harmonic generation is spatially distinct from newly deposited matrix components such as tenascin C. We also showed long-term (12 hours) imaging of T-cell interaction with tumor cells and tumor cells migration along the collagen IV of basement membrane. Taken together, this method uniquely allows for the simultaneous detection of tumor cells, their physical microenvironment and the endogenous tissue immune response over time, which may provide important insights into the mechanisms underlying tumor progression and ultimate success or resistance to therapy.
Bioengineering, Issue 86, Intravital imaging, epifluorescence, two-photon imaging, Tumor matrix, Matrix remodeling
Play Button
Derivation and Characterization of a Transgene-free Human Induced Pluripotent Stem Cell Line and Conversion into Defined Clinical-grade Conditions
Authors: Jason P. Awe, Agustin Vega-Crespo, James A. Byrne.
Institutions: University of California, Los Angeles (UCLA), University of California, Los Angeles (UCLA).
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications1. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context2. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences3. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology—provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications—for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Stem Cell Biology, Issue 93, Human induced pluripotent stem cells, STEMCCA, factor-free, GMP, xeno-free, quantitative PCR
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)
Authors: Jason S Goldstein, Tracy L Pugh, Elizabeth A Dubofsky, Kari L Lavalli, Michael Clancy, Winsor H Watson III.
Institutions: University of New Hampshire, Massachusetts Division of Marine Fisheries, Boston University, Middle College.
Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations.
Environmental Sciences, Issue 84, sperm limitation, spermatophore, lobster fishery, sex ratios, sperm receptacle, mating, American lobster, Homarus americanus
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Integrated Field Lysimetry and Porewater Sampling for Evaluation of Chemical Mobility in Soils and Established Vegetation
Authors: Audrey R. Matteson, Denis J. Mahoney, Travis W. Gannon, Matthew L. Polizzotto.
Institutions: North Carolina State University, North Carolina State University.
Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.
Environmental Sciences, Issue 89, Lysimetry, porewater, soil, chemical leaching, pesticides, turfgrass, waste
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Nest Building as an Indicator of Health and Welfare in Laboratory Mice
Authors: Brianna N. Gaskill, Alicia Z. Karas, Joseph P. Garner, Kathleen R. Pritchett-Corning.
Institutions: Charles River, Tufts University, Stanford University, Stanford University.
The minimization and alleviation of suffering has moral and scientific implications. In order to mitigate this negative experience one must be able to identify when an animal is actually in distress. Pain, illness, or distress cannot be managed if unrecognized. Evaluation of pain or illness typically involves the measurement of physiologic and behavioral indicators which are either invasive or not suitable for large scale assessment. The observation of nesting behavior shows promise as the basis of a species appropriate cage-side assessment tool for recognizing distress in mice. Here we demonstrate the utility of nest building behavior in laboratory mice as an ethologically relevant indicator of welfare. The methods presented can be successfully used to identify thermal stressors, aggressive cages, sickness, and pain. Observation of nest building behavior in mouse colonies provides a refinement to health and well-being assessment on a day to day basis.
Behavior, Issue 82, Animal Structures, Surgical Procedures, Life Sciences (General), Behavioral Sciences, Mouse, Welfare assessment, Nest building
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Measuring Blood Pressure in Mice using Volume Pressure Recording, a Tail-cuff Method
Authors: Alan Daugherty, Debra Rateri, Lu Hong, Anju Balakrishnan.
Institutions: University of Kentucky.
The CODA 8-Channel High Throughput Non-Invasive Blood Pressure system measures the blood pressure in up to 8 mice or rats simultaneously. The CODA tail-cuff system uses Volume Pressure Recording (VPR) to measure the blood pressure by determining the tail blood volume. A specially designed differential pressure transducer and an occlusion tail-cuff measure the total blood volume in the tail without the need to obtain the individual pulse signal. Special attention is afforded to the length of the occlusion cuff in order to derive the most accurate blood pressure readings. VPR can easily obtain readings on dark-skinned rodents, such as C57BL6 mice and is MRI compatible. The CODA system provides you with measurements of six (6) different blood pressure parameters; systolic and diastolic blood pressure, heart rate, mean blood pressure, tail blood flow, and tail blood volume. Measurements can be made on either awake or anesthetized mice or rats. The CODA system includes a controller, laptop computer, software, cuffs, animal holders, infrared warming pads, and an infrared thermometer. There are seven different holder sizes for mice as small as 8 grams to rats as large as 900 grams.
Medicine, Issue 27, blood pressure, systolic, diastolic, tail-cuff, mouse, rat
Play Button
Injection of An. stephensi Embryos to Generate Malaria-resistant Mosquitoes
Authors: Olle Terenius, Jennifer Juhn, Anthony A. James.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
The introduction of exogenous genes into the genomes of mosquitoes requires microinjection techniques tailored to the specific species of interest. This video protocol demonstrates a method used by the James laboratory to microinject DNA constructs into Anopheles stephensi embryos for the generation of transformed mosquitoes. Techniques for preparing microinjection needles, collecting and preparing embryos and performing the microinjection are illustrated.
Cellular Biology, Issue 5, mosquito, malaria, genetics, embryo, injection
Play Button
Assessing Burrowing, Nest Construction, and Hoarding in Mice
Authors: Robert Deacon.
Institutions: University of Oxford .
Deterioration in the ability to perform "Activities of daily living" (ADL) is an early sign of Alzheimer's disease (AD). Preclinical behavioural screening of possible treatments for AD currently largely focuses on cognitive testing, which frequently demands expensive equipment and lots of experimenter time. However, human episodic memory (the most severely affected aspect of memory in AD) is different to rodent memory, which seems to be largely non-episodic. Therefore the present ways of screening for new AD treatments for AD in rodents are intrinsically unlikely to succeed. A new approach to preclinical screening would be to characterise the ADL of mice. Fortuitously, several such assays have recently been developed at Oxford, and here the three most sensitive and well-characterised are presented. Burrowing was first developed in Oxford13. It evolved from a need to develop a mouse hoarding paradigm. Most published rodent hoarding paradigms required a distant food source to be linked to the home cage by a connecting passage. This would involve modifying the home cage as well as making a mouse-proof connecting passage and food source. So it was considered whether it would be possible to put the food source inside the cage. It was found that if a container was placed on the floor it was emptied by the next morning., The food pellets were, however, simply deposited in a heap at the container entrance, rather than placed in a discrete place away from the container, as might be expected if the mice were truly hoarding them. Close inspection showed that the mice were performing digging ("burrowing") movements, not carrying the pellets in their mouths to a selected place as they would if truly hoarding them.6 Food pellets are not an essential substrate for burrowing; mice will empty tubes filled with sand, gravel, even soiled bedding from their own cage. Moreover, they will empty a full tube even if an empty one is placed next to it8. Several nesting protocols exist in the literature. The present Oxford one simplifies the procedure and has a well-defined scoring system for nest quality5. A hoarding paradigm was later developed in which the mice, rather than hoarding back to the real home cage, were adapted to living in the "home base" of a hoarding apparatus. This home base was connected to a tube made of wire mesh, the distal end of which contained the food source. This arrangement proved to yield good hoarding behaviour, as long as the mice were adapted to living in the "home base" during the day and only allowed to enter the hoarding tube at night.
Neuroscience, Issue 59, Mice, murine, burrowing, nesting, hoarding, hippocampus, Alzheimer’s, prion, species-typical, welfare, 3Rs
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.