JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Capture, anesthesia, and disturbance of free-ranging brown bears (Ursus arctos) during hibernation.
We conducted thirteen immobilizations of previously collared hibernating two- to four-year-old brown bears (Ursus arctos) weighing 21-66 kg in central Sweden in winter 2010 and 2011 for comparative physiology research. Here we report, for the first time, an effective protocol for the capture and anesthesia of free-ranging brown bears during hibernation and an assessment of the disturbance the captures caused. Bears were darted in anthill, soil, or uprooted tree dens on eleven occasions, but two bears in rock dens fled and were darted outside the den. We used medetomidine at 0.02-0.06 mg/kg and zolazepam-tiletamine at 0.9-2.8 mg/kg for anesthesia. In addition, ketamine at 1.5 mg/kg was hand-injected intramuscularly in four bears and in six it was included in the dart at 1.1-3.0 mg/kg. Once anesthetized, bears were removed from the dens. In nine bears, arterial blood samples were analyzed immediately with a portable blood gas analyzer. We corrected hypoxemia in seven bears (PaO(2) 57-74 mmHg) with supplemental oxygen. We placed the bears back into the dens and antagonized the effect of medetomidine with atipamezole. Capturing bears in the den significantly increased the risk of den abandonment. One of twelve collared bears that were captured remained at the original den until spring, and eleven, left their dens (mean ± standard deviation) 3.2±3.6 (range 0.5-10.5) days after capture. They used 1.9±0.9 intermediate resting sites, during 6.2±7.8 days before entering a new permanent den. The eleven new permanent dens were located 730±589 m from the original dens. We documented that it was feasible and safe to capture hibernating brown bears, although they behaved differently than black bears. When doing so, researchers should use 25% of the doses used for helicopter darting during the active period and should consider increased energetic costs associated with den abandonment.
Authors: Jerrold Meyer, Melinda Novak, Amanda Hamel, Kendra Rosenberg.
Published: 01-24-2014
The stress hormone cortisol (CORT) is slowly incorporated into the growing hair shaft of humans, nonhuman primates, and other mammals. We developed and validated a method for CORT extraction and analysis from rhesus monkey hair and subsequently adapted this method for use with human scalp hair. In contrast to CORT "point samples" obtained from plasma or saliva, hair CORT provides an integrated measure of hypothalamic-pituitary-adrenocortical (HPA) system activity, and thus physiological stress, during the period of hormone incorporation. Because human scalp hair grows at an average rate of 1 cm/month, CORT levels obtained from hair segments several cm in length can potentially serve as a biomarker of stress experienced over a number of months. In our method, each hair sample is first washed twice in isopropanol to remove any CORT from the outside of the hair shaft that has been deposited from sweat or sebum. After drying, the sample is ground to a fine powder to break up the hair's protein matrix and increase the surface area for extraction. CORT from the interior of the hair shaft is extracted into methanol, the methanol is evaporated, and the extract is reconstituted in assay buffer. Extracted CORT, along with standards and quality controls, is then analyzed by means of a sensitive and specific commercially available enzyme immunoassay (EIA) kit. Readout from the EIA is converted to pg CORT per mg powdered hair weight. This method has been used in our laboratory to analyze hair CORT in humans, several species of macaque monkeys, marmosets, dogs, and polar bears. Many studies both from our lab and from other research groups have demonstrated the broad applicability of hair CORT for assessing chronic stress exposure in natural as well as laboratory settings.
22 Related JoVE Articles!
Play Button
A Technique to Screen American Beech for Resistance to the Beech Scale Insect (Cryptococcus fagisuga Lind.)
Authors: Jennifer L. Koch, David W. Carey.
Institutions: US Forest Service.
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation.
Environmental Sciences, Issue 87, Forestry, Insects, Disease Resistance, American beech, Fagus grandifolia, beech scale, Cryptococcus fagisuga, resistance, screen, bioassay
Play Button
Milk Collection Methods for Mice and Reeves' Muntjac Deer
Authors: Kassandra Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, Candace Mathiason.
Institutions: Colorado State University.
Animal models are commonly used throughout research laboratories to accomplish what would normally be considered impractical in a pathogen’s native host. Milk collection from animals allows scientists the opportunity to study many aspects of reproduction including vertical transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate volumes of milk for these studies is a challenging task, especially from small animal models. Here we illustrate an inexpensive and facile method for milk collection in mice and Reeves’ muntjac deer that does not require specialized equipment or extensive training. This particular method requires two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in an appropriate container from either a Muntjac or mouse model. The mouse model also requires the use of a P-200 pipetman and corresponding pipette tips. While this method is low cost and relatively easy to perform, researchers should be advised that anesthetizing the animal is required for optimal milk collection.
Basic Protocol, Issue 89, mouse, milk, murine, muntjac, doe
Play Button
Guidelines for Elective Pediatric Fiberoptic Intubation
Authors: Roland N. Kaddoum, Zulfiqar Ahmed, Alan A. D'Augsutine, Maria M. Zestos.
Institutions: St. Jude Children's Research Hospital, Children's Hospital of Michigan, Children's Hospital of Michigan.
Fiberoptic intubation in pediatric patients is often required especially in difficult airways of syndromic patients i.e. Pierre Robin Syndrome. Small babies will desaturate very quickly if ventilation is interrupted mainly to high metabolic rate. We describe guidelines to perform a safe fiberoptic intubation while maintaining spontaneous breathing throughout the procedure. Steps requiring the use of propofol pump, fentanyl, glycopyrrolate, red rubber catheter, metal insuflation hook, afrin, lubricant and lidocaine spray are shown.
Medicine, Issue 47, Fiberoptic, Intubation, Pediatric, elective
Play Button
One-step Metabolomics: Carbohydrates, Organic and Amino Acids Quantified in a Single Procedure
Authors: James D. Shoemaker.
Institutions: Saint Louis University School of Medicine.
Every infant born in the US is now screened for up to 42 rare genetic disorders called "inborn errors of metabolism". The screening method is based on tandem mass spectrometry and quantifies acylcarnitines as a screen for organic acidemias and also measures amino acids. All states also perform enzymatic testing for carbohydrate disorders such as galactosemia. Because the results can be non-specific, follow-up testing of positive results is required using a more definitive method. The present report describes the "urease" method of sample preparation for inborn error screening. Crystalline urease enzyme is used to remove urea from body fluids which permits most other water-soluble metabolites to be dehydrated and derivatized for gas chromatography in a single procedure. Dehydration by evaporation in a nitrogen stream is facilitated by adding acetonitrile and methylene chloride. Then, trimethylsilylation takes place in the presence of a unique catalyst, triethylammonium trifluoroacetate. Automated injection and chromatography is followed by macro-driven custom quantification of 192 metabolites and semi-quantification of every major component using specialized libraries of mass spectra of TMS derivatized biological compounds. The analysis may be performed on the widely-used Chemstation platform using the macros and libraries available from the author. In our laboratory, over 16,000 patient samples have been analyzed using the method with a diagnostic yield of about 17%--that is, 17% of the samples results reveal findings that should be acted upon by the ordering physician. Included in these are over 180 confirmed inborn errors, of which about 38% could not have been diagnosed using previous methods.
Biochemistry, Issue 40, metabolomics, gas chromatography/mass spectrometry, GC/MS, inborn errors, vitamin deficiency, BNA analyses, carbohydrate, amino acid, organic acid, urease
Play Button
Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Authors: Hirotaka Shoji, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Behavior, Issue 85, Fear, Learning, Memory, ImageFZ program, Mouse, contextual fear, cued fear
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue
Authors: Xueli Zhang, Chaincy Kuo, Anna Moore, Chongzhao Ran.
Institutions: Massachusetts General Hospital/Harvard Medical School, China Pharmaceutical University, Perkin Elmer.
Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video report, we demonstrate that Cerenkov luminescence imaging (CLI) with 18F-FDG can be used to optically image BAT in small animals. BAT activation is observed after intraperitoneal injection of norepinephrine (NE) and cold treatment, and depression of BAT is induced by long anesthesia. Using multiple-filter Cerenkov luminescence imaging, spectral unmixing and 3D imaging reconstruction are demonstrated. Our results suggest that CLI with 18F-FDG is a practical technique for imaging BAT in small animals, and this technique can be used as a cheap, fast, and alternative imaging tool for BAT research.
Medicine, Issue 92, Cerenkov luminescence imaging, brown adipose tissue, 18F-FDG, optical imaging, in vivo imaging, spectral unmixing
Play Button
Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology
Authors: William S. Phipps, Zhizhong Yin, Candice Bae, Julia Z. Sharpe, Andrew M. Bishara, Emily S. Nelson, Aaron S. Weaver, Daniel Brown, Terri L. McKay, DeVon Griffin, Eugene Y. Chan.
Institutions: DNA Medicine Institute, Harvard Medical School, NASA Glenn Research Center, ZIN Technologies.
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Cellular Biology, Issue 93, Point-of-care, prototype, diagnostics, spaceflight, reduced gravity, parabolic flight, flow cytometry, fluorescence, cell counting, micromixing, spiral-vortex, blood mixing
Play Button
Quantitative Optical Microscopy: Measurement of Cellular Biophysical Features with a Standard Optical Microscope
Authors: Kevin G. Phillips, Sandra M. Baker-Groberg, Owen J.T. McCarty.
Institutions: Oregon Health & Science University, School of Medicine, Oregon Health & Science University, School of Medicine, Oregon Health & Science University, School of Medicine.
We describe the use of a standard optical microscope to perform quantitative measurements of mass, volume, and density on cellular specimens through a combination of bright field and differential interference contrast imagery. Two primary approaches are presented: noninterferometric quantitative phase microscopy (NIQPM), to perform measurements of total cell mass and subcellular density distribution, and Hilbert transform differential interference contrast microscopy (HTDIC) to determine volume. NIQPM is based on a simplified model of wave propagation, termed the paraxial approximation, with three underlying assumptions: low numerical aperture (NA) illumination, weak scattering, and weak absorption of light by the specimen. Fortunately, unstained cellular specimens satisfy these assumptions and low NA illumination is easily achieved on commercial microscopes. HTDIC is used to obtain volumetric information from through-focus DIC imagery under high NA illumination conditions. High NA illumination enables enhanced sectioning of the specimen along the optical axis. Hilbert transform processing on the DIC image stacks greatly enhances edge detection algorithms for localization of the specimen borders in three dimensions by separating the gray values of the specimen intensity from those of the background. The primary advantages of NIQPM and HTDIC lay in their technological accessibility using “off-the-shelf” microscopes. There are two basic limitations of these methods: slow z-stack acquisition time on commercial scopes currently abrogates the investigation of phenomena faster than 1 frame/minute, and secondly, diffraction effects restrict the utility of NIQPM and HTDIC to objects from 0.2 up to 10 (NIQPM) and 20 (HTDIC) μm in diameter, respectively. Hence, the specimen and its associated time dynamics of interest must meet certain size and temporal constraints to enable the use of these methods. Excitingly, most fixed cellular specimens are readily investigated with these methods.
Bioengineering, Issue 86, Label-free optics, quantitative microscopy, cellular biophysics, cell mass, cell volume, cell density
Play Button
Basophil Activation Test for Investigation of IgE-Mediated Mechanisms in Drug Hypersensitivity
Authors: Markus Steiner, Andrea Harrer, Roland Lang, Michael Schneider, Fátima Ferreira, Thomas Hawranek, Martin Himly.
Institutions: University of Salzburg, Paracelsus Medical University, Paracelsus Medical University, Bühlmann Laboratories, University of Salzburg.
Hypersensitivity reactions against non-steroidal anti-inflammatory drugs (NSAIDs) like propyphenazone (PP) and diclofenac (DF) can manifest as Type I-like allergic reactions 1. In clinical practice, diagnosis of drug hypersensitivity is mainly performed by patient history, as skin testing is not reliable and oral provocation testing bears life-threatening risks for the patient 2. Hence, evidence for an underlying IgE-mediated pathomechanism is hard to obtain. Here, we present an in vitro method based on the use of human basophils derived from drug-hypersensitive patients that mimics the allergic effector reaction in vivo. As basophils of drug-allergic patients carry IgE molecules specific for the culprit drug, they become activated upon IgE receptor crosslinking and release allergic effector molecules. The activation of basophils can be monitored by the determination of the upregulation of CD63 surface expression using flow cytometry 3. In the case of low molecular weight drugs, conjugates are designed to enable IgE receptor crosslinking on basophils. As depicted in Figure 1, two representatives of NSAIDs, PP and DF, are covalently bound to human serum albumin (HSA) via a carboxyl group reacting with the primary amino group of lysine residues. DF carries an intrinsic carboxyl group and, thus, can be used directly 4, whereas a carboxyl group-containing derivative of PP had to be organochemically synthesized prior to the study 1. The coupling degree of the low molecular weight compounds on the protein carrier molecule and their spatial distribution is important to guarantee crosslinking of two IgE receptor molecules. The here described protocol applies high performance-size exclusion chromatography (HPSEC) equipped with a sequential refractive index (RI) and ultra violet (UV) detection system for determination of the coupling degree. As the described methodology may be applied for other drugs, the basophil activation test (BAT) bears the potential to be used for the determination of IgE-mediated mechanisms in drug hypersensitivity. Here, we determine PP hypersensitivity as IgE-mediated and DF hypersensitivity as non-IgE-mediated by BAT.
Immunology, Issue 55, NSAIDs, hypersensitivity, propyphenazone, diclofenac, drug conjugates, basophil activation test
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
Play Button
A Murine Model of Stent Implantation in the Carotid Artery for the Study of Restenosis
Authors: Sakine Simsekyilmaz, Fabian Schreiber, Stefan Weinandy, Felix Gremse, Tolga Taha Sönmez, Elisa A. Liehn.
Institutions: RWTH Aachen University, RWTH Aachen University, Helmholtz-Institute of RWTH Aachen University, RWTH Aachen University, RWTH Aachen University.
Despite the considerable progress made in the stent development in the last decades, cardiovascular diseases remain the main cause of death in western countries. Beside the benefits offered by the development of different drug-eluting stents, the coronary revascularization bears also the life-threatening risks of in-stent thrombosis and restenosis. Research on new therapeutic strategies is impaired by the lack of appropriate methods to study stent implantation and restenosis processes. Here, we describe a rapid and accessible procedure of stent implantation in mouse carotid artery, which offers the possibility to study in a convenient way the molecular mechanisms of vessel remodeling and the effects of different drug coatings.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Mechanical Engineering, Cardiology, Surgery, Microsurgery, Animal Experimentation, Models, Animal, Cardiovascular Diseases, Stent implantation, atherosclerosis, restenosis, in-stent thrombosis, stent, mouse carotid artery, arteries, blood vessels, mouse, animal model, surgical techniques
Play Button
Simulating Pancreatic Neuroplasticity: In Vitro Dual-neuron Plasticity Assay
Authors: Ihsan Ekin Demir, Elke Tieftrunk, Karl-Herbert Schäfer, Helmut Friess, Güralp O. Ceyhan.
Institutions: Technische Universität München, University of Applied Sciences Kaiserslautern/Zweibrücken.
Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.
Medicine, Issue 86, Autonomic Nervous System Diseases, Digestive System Neoplasms, Gastrointestinal Diseases, Pancreatic Diseases, Pancreatic Neoplasms, Pancreatitis, Pancreatic neuroplasticity, dorsal root ganglia, myenteric plexus, Morphometry, neurite density, neurite branching, perikaryonal hypertrophy, neuronal plasticity
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
A Swine Model of Neonatal Asphyxia
Authors: Po-Yin Cheung, Richdeep S. Gill, David L. Bigam.
Institutions: University of Alberta, University of Alberta.
Annually more than 1 million neonates die worldwide as related to asphyxia. Asphyxiated neonates commonly have multi-organ failure including hypotension, perfusion deficit, hypoxic-ischemic encephalopathy, pulmonary hypertension, vasculopathic enterocolitis, renal failure and thrombo-embolic complications. Animal models are developed to help us understand the patho-physiology and pharmacology of neonatal asphyxia. In comparison to rodents and newborn lambs, the newborn piglet has been proven to be a valuable model. The newborn piglet has several advantages including similar development as that of 36-38 weeks human fetus with comparable body systems, large body size (˜1.5-2 kg at birth) that allows the instrumentation and monitoring of the animal and controls the confounding variables of hypoxia and hemodynamic derangements. We here describe an experimental protocol to simulate neonatal asphyxia and allow us to examine the systemic and regional hemodynamic changes during the asphyxiating and reoxygenation process as well as the respective effects of interventions. Further, the model has the advantage of studying multi-organ failure or dysfunction simultaneously and the interaction with various body systems. The experimental model is a non-survival procedure that involves the surgical instrumentation of newborn piglets (1-3 day-old and 1.5-2.5 kg weight, mixed breed) to allow the establishment of mechanical ventilation, vascular (arterial and central venous) access and the placement of catheters and flow probes (Transonic Inc.) for the continuously monitoring of intra-vascular pressure and blood flow across different arteries including main pulmonary, common carotid, superior mesenteric and left renal arteries. Using these surgically instrumented piglets, after stabilization for 30-60 minutes as defined by Z<10% variation in hemodynamic parameters and normal blood gases, we commence an experimental protocol of severe hypoxemia which is induced via normocapnic alveolar hypoxia. The piglet is ventilated with 10-15% oxygen by increasing the inhaled concentration of nitrogen gas for 2h, aiming for arterial oxygen saturations of 30-40%. This degree of hypoxemia will produce clinical asphyxia with severe metabolic acidosis, systemic hypotension and cardiogenic shock with hypoperfusion to vital organs. The hypoxia is followed by reoxygenation with 100% oxygen for 0.5h and then 21% oxygen for 3.5h. Pharmacologic interventions can be introduced in due course and their effects investigated in a blinded, block-randomized fashion.
Medicine, Issue 56, Developmental Biology, pigs, newborn, hypoxia, asphyxia, reoxygenation
Play Button
Tracheotomy: A Method for Transplantation of Stem Cells to the Lung
Authors: Yakov Peter.
Institutions: Harvard Medical School.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.
Cellular Biology, Issue 2, lung, stem cells, transplantation, trachea
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.