JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Effect of intravitreal anti-vascular endothelial growth factor therapy on the risk of arterial thromboembolic events: a meta-analysis.
Intravitreal anti-vascular endothelial growth factor (VEGF) monoclonal antibodies are used in ocular neovascular diseases. A consensus has emerged that intravenous anti-VEGF can increase the risk of arterial thromboembolic events. However, the role of intravitreal anti-VEGF in arterial thromboembolism is controversial. Therefore, we did a systematic review and meta-analysis to investigate the effects of intravitreal anti-VEGF on the risk of arterial thromboembolic events.
Whole-mount immunohistochemical analysis for imaging the entire vasculature is pivotal for understanding the cellular mechanisms of branching morphogenesis. We have developed the limb skin vasculature model to study vascular development in which a pre-existing primitive capillary plexus is reorganized into a hierarchically branched vascular network. Whole-mount confocal microscopy with multiple labelling allows for robust imaging of intact blood vessels as well as their cellular components including endothelial cells, pericytes and smooth muscle cells, using specific fluorescent markers. Advances in this limb skin vasculature model with genetic studies have improved understanding molecular mechanisms of vascular development and patterning. The limb skin vasculature model has been used to study how peripheral nerves provide a spatial template for the differentiation and patterning of arteries. This video article describes a simple and robust protocol to stain intact blood vessels with vascular specific antibodies and fluorescent secondary antibodies, which is applicable for vascularized embryonic organs where we are able to follow the process of vascular development.
20 Related JoVE Articles!
Play Button
Rat Mesentery Angiogenesis Assay
Authors: Klas C. Norrby.
Institutions: University of Gothenburg.
The adult rat mesentery window angiogenesis assay is biologically appropriate and is exceptionally well suited to the study of sprouting angiogenesis in vivo [see review papers], which is the dominating form of angiogenesis in human tumors and non-tumor tissues, as discussed in invited review papers1,2. Angiogenesis induced in the membranous mesenteric parts by intraperitoneal (i.p.) injection of a pro-angiogenic factor can be modulated by subcutaneous (s.c.), intravenous (i.v.) or oral (p.o.) treatment with modifying agents of choice. Each membranous part of the mesentery is translucent and framed by fatty tissue, giving it a window-like appearance. The assay has the following advantageous features: (i) the test tissue is natively vascularized, albeit sparsely, and since it is extremely thin, the microvessel network is virtually two-dimensional, which allows the entire network to be assessed microscopically in situ; (ii) in adult rats the test tissue lacks significant physiologic angiogenesis, which characterizes most normal adult mammalian tissues; the degree of native vascularization is, however, correlated with age, as discussed in1; (iii) the negligible level of trauma-induced angiogenesis ensures high sensitivity; (iv) the assay replicates the clinical situation, as the angiogenesis-modulating test drugs are administered systemically and the responses observed reflect the net effect of all the metabolic, cellular, and molecular alterations induced by the treatment; (v) the assay allows assessments of objective, quantitative, unbiased variables of microvascular spatial extension, density, and network pattern formation, as well as of capillary sprouting, thereby enabling robust statistical analyses of the dose-effect and molecular structure-activity relationships; and (vi) the assay reveals with high sensitivity the toxic or harmful effects of treatments in terms of decreased rate of physiologic body-weight gain, as adult rats grow robustly. Mast-cell-mediated angiogenesis was first demonstrated using this assay3,4. The model demonstrates a high level of discrimination regarding dosage-effect relationships and the measured effects of systemically administered chemically or functionally closely related drugs and proteins, including: (i) low-dosage, metronomically administered standard chemotherapeutics that yield diverse, drug-specific effects (i.e., angiogenesis-suppressive, neutral or angiogenesis-stimulating activities5); (ii) natural iron-unsaturated human lactoferrin, which stimulates VEGF-A-mediated angiogenesis6, and natural iron-unsaturated bovine lactoferrin, which inhibits VEGF-A-mediated angiogenesis7; and (iii) low-molecular-weight heparin fractions produced by various means8,9. Moreover, the assay is highly suited to studies of the combined effects on angiogenesis of agents that are administered systemically in a concurrent or sequential fashion. The idea of making this video originated from the late Dr. Judah Folkman when he visited our laboratory and witnessed the methodology being demonstrated. Review papers (invited) discussing and appraising the assay Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 10, 588-612 (2006). Norrby, K. Drug testing with angiogenesis models. Expert Opin. Drug. Discov. 3, 533-549 (2008).
Physiology, Issue 52, angiogenesis, mesentery, objective variables, morphometry, rat, local effects, systemic effects
Play Button
Laser-Induced Chronic Ocular Hypertension Model on SD Rats
Authors: Kin Chiu, Raymond Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Glaucoma is one of the major causes of blindness in the world. Elevated intraocular pressure is a major risk factor. Laser photocoagulation induced ocular hypertension is one of the well established animal models. This video demonstrates how to induce ocular hypertension by Argon laser photocoagulation in rat.
Neuroscience, Issue 10, glaucoma, ocular hypertension, rat
Play Button
Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
Authors: Melissa David, Omar Malti, Majd AlGhatrif, Jeanette Wright, Marco Canepa, James B. Strait.
Institutions: National Institute of Aging.
Carotid-femoral pulse wave velocity is considered the gold standard for measurements of central arterial stiffness obtained through noninvasive methods1. Subjects are placed in the supine position and allowed to rest quietly for at least 10 min prior to the start of the exam. The proper cuff size is selected and a blood pressure is obtained using an oscillometric device. Once a resting blood pressure has been obtained, pressure waveforms are acquired from the right femoral and right common carotid arteries. The system then automatically calculates the pulse transit time between these two sites (using the carotid artery as a surrogate for the descending aorta). Body surface measurements are used to determine the distance traveled by the pulse wave between the two sampling sites. This distance is then divided by the pulse transit time resulting in the pulse wave velocity. The measurements are performed in triplicate and the average is used for analysis.
Medicine, Issue 84, Pulse Wave Velocity (PWV), Pulse Wave Analysis (PWA), Arterial stiffness, Aging, Cardiovascular, Carotid-femoral pulse
Play Button
A Murine Model of Stent Implantation in the Carotid Artery for the Study of Restenosis
Authors: Sakine Simsekyilmaz, Fabian Schreiber, Stefan Weinandy, Felix Gremse, Tolga Taha Sönmez, Elisa A. Liehn.
Institutions: RWTH Aachen University, RWTH Aachen University, Helmholtz-Institute of RWTH Aachen University, RWTH Aachen University, RWTH Aachen University.
Despite the considerable progress made in the stent development in the last decades, cardiovascular diseases remain the main cause of death in western countries. Beside the benefits offered by the development of different drug-eluting stents, the coronary revascularization bears also the life-threatening risks of in-stent thrombosis and restenosis. Research on new therapeutic strategies is impaired by the lack of appropriate methods to study stent implantation and restenosis processes. Here, we describe a rapid and accessible procedure of stent implantation in mouse carotid artery, which offers the possibility to study in a convenient way the molecular mechanisms of vessel remodeling and the effects of different drug coatings.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Mechanical Engineering, Cardiology, Surgery, Microsurgery, Animal Experimentation, Models, Animal, Cardiovascular Diseases, Stent implantation, atherosclerosis, restenosis, in-stent thrombosis, stent, mouse carotid artery, arteries, blood vessels, mouse, animal model, surgical techniques
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
Play Button
Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound
Authors: Maggie M. Kuo, Viachaslau Barodka, Theodore P. Abraham, Jochen Steppan, Artin A. Shoukas, Mark Butlin, Alberto Avolio, Dan E. Berkowitz, Lakshmi Santhanam.
Institutions: Johns Hopkins University, Johns Hopkins University, Johns Hopkins University, Macquarie University.
We present a protocol for measuring in vivo aortic stiffness in mice using high-resolution ultrasound imaging. Aortic diameter is measured by ultrasound and aortic blood pressure is measured invasively with a solid-state pressure catheter. Blood pressure is raised then lowered incrementally by intravenous infusion of vasoactive drugs phenylephrine and sodium nitroprusside. Aortic diameter is measured for each pressure step to characterize the pressure-diameter relationship of the ascending aorta. Stiffness indices derived from the pressure-diameter relationship can be calculated from the data collected. Calculation of arterial compliance is described in this protocol. This technique can be used to investigate mechanisms underlying increased aortic stiffness associated with cardiovascular disease and aging. The technique produces a physiologically relevant measure of stiffness compared to ex vivo approaches because physiological influences on aortic stiffness are incorporated in the measurement. The primary limitation of this technique is the measurement error introduced from the movement of the aorta during the cardiac cycle. This motion can be compensated by adjusting the location of the probe with the aortic movement as well as making multiple measurements of the aortic pressure-diameter relationship and expanding the experimental group size.
Medicine, Issue 94, Aortic stiffness, ultrasound, in vivo, aortic compliance, elastic modulus, mouse model, cardiovascular disease
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
Authors: Nehal N. Mehta, Drew A. Torigian, Joel M. Gelfand, Babak Saboury, Abass Alavi.
Institutions: University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC)1 and carotid intimal medial thickness (C-IMT)2 provide information about the burden of disease. However, despite multiple validation studies of CAC3-5, and C-IMT2,6, these modalities do not accurately assess plaque characteristics7,8, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events9-13. [18F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism14,15. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity16, an important source of cellular inflammation in vessel walls. More recently, we17,18 and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries9,16,19,20. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors21,22 and is also highly associated with overall burden of atherosclerosis23. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy24 as well as longer term therapeutic lifestyle changes (16 months)25. The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability26. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.9,20,27,28
Medicine, Issue 63, FDG-PET/CT, atherosclerosis, vascular inflammation, quantitative radiology, imaging
Play Button
A Method for Labeling Vasculature in Embryonic Mice
Authors: Jerrod L. Bryson, Mark C. Coles, Nancy R. Manley.
Institutions: University of Georgia, University of York, University of Georgia.
The establishment of a functional blood vessel network is an essential part of organogenesis, and is required for optimal organ function. For example, in the thymus proper vasculature formation and patterning is essential for thymocyte entry into the organ and mature T-cell exit to the periphery. The spatial arrangement of blood vessels in the thymus is dependent upon signals from the local microenvironment, namely thymic epithelial cells (TEC). Several recent reports suggest that disruption of these signals results in thymus blood vessel defects 1,2. Previous studies have described techniques used to label the neonatal and adult thymus vasculature 1,2. We demonstrate here a technique for labeling blood vessels in the embryonic thymus. This method combines the use of FITC-dextran or Griffonia (Bandeiraea) Simplicifolia Lectin I (GSL 1 - isolectin B4) facial vein injections and CD31 antibody staining to identify thymus vascular structures and PDGFR-β to label thymic perivascular mesenchyme 3-5. The option of using cryosections or vibratome sections is also provided. This protocol can be used to identify thymus vascular defects, which is critical for defining the roles of TEC-derived molecules in thymus blood vessel formation. As the method labels the entire vasculature, it can also be used to analyze the vascular networks in multiple organs and tissues throughout the embryo including skin and heart 6-10.
Immunology, Issue 56, Thymus, Skin, Endothelial Cell, Mesenchyme, Vasculature, CD31, FITC-dextran, isolectin B4, Facial Vein, Development, Labeling, Mice, Injection
Play Button
Assessment of Vascular Regeneration in the CNS Using the Mouse Retina
Authors: Khalil Miloudi, Agnieszka Dejda, François Binet, Eric Lapalme, Agustin Cerani, Przemyslaw Sapieha.
Institutions: McGill University, University of Montréal, University of Montréal.
The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS.
Neuroscience, Issue 88, vascular regeneration, angiogenesis, vessels, retina, neurons, oxygen-induced retinopathy, neovascularization, CNS
Play Button
The Corneal Micropocket Assay: A Model of Angiogenesis in the Mouse Eye
Authors: Amy E. Birsner, Ofra Benny, Robert J. D'Amato.
Institutions: Boston Children's Hospital, The Hebrew University of Jerusalem, Harvard Medical School.
The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.
Neuroscience, Issue 90, Angiogensis, neovasculatization, in vivo assay, model, fibroblast growth factor, vascular endothelial growth factor
Play Button
Whole Mount Immunofluorescent Staining of the Neonatal Mouse Retina to Investigate Angiogenesis In vivo
Authors: Simon Tual-Chalot, Kathleen R. Allinson, Marcus Fruttiger, Helen M. Arthur.
Institutions: Newcastle University , University College, London.
Angiogenesis is the complex process of new blood vessel formation defined by the sprouting of new blood vessels from a pre-existing vessel network. Angiogenesis plays a key role not only in normal development of organs and tissues, but also in many diseases in which blood vessel formation is dysregulated, such as cancer, blindness and ischemic diseases. In adult life, blood vessels are generally quiescent so angiogenesis is an important target for novel drug development to try and regulate new vessel formation specifically in disease. In order to better understand angiogenesis and to develop appropriate strategies to regulate it, models are required that accurately reflect the different biological steps that are involved. The mouse neonatal retina provides an excellent model of angiogenesis because arteries, veins and capillaries develop to form a vascular plexus during the first week after birth. This model also has the advantage of having a two-dimensional (2D) structure making analysis straightforward compared with the complex 3D anatomy of other vascular networks. By analyzing the retinal vascular plexus at different times after birth, it is possible to observe the various stages of angiogenesis under the microscope. This article demonstrates a straightforward procedure for analyzing the vasculature of a mouse retina using fluorescent staining with isolectin and vascular specific antibodies.
Developmental Biology, Issue 77, Neurobiology, Neuroscience, Biomedical Engineering, Cellular Biology, Molecular Biology, Medicine, Anatomy, Physiology, Ophthalmology, Angiogenesis Modulating Agents, Growth and Development, Lymphangiogenesis, Angiogenesis, Mouse Neonatal Retina, Immunofluorescent-Staining, confocal microscopy, imaging, animal model
Play Button
An Alkali-burn Injury Model of Corneal Neovascularization in the Mouse
Authors: Chastain Anderson, Qinbo Zhou, Shusheng Wang.
Institutions: Tulane University, Tulane University.
Under normal conditions, the cornea is avascular, and this transparency is essential for maintaining good visual acuity. Neovascularization (NV) of the cornea, which can be caused by trauma, keratoplasty or infectious disease, breaks down the so called ‘angiogenic privilege' of the cornea and forms the basis of multiple visual pathologies that may even lead to blindness. Although there are several treatment options available, the fundamental medical need presented by corneal neovascular pathologies remains unmet. In order to develop safe, effective, and targeted therapies, a reliable model of corneal NV and pharmacological intervention is required. Here, we describe an alkali-burn injury corneal neovascularization model in the mouse. This protocol provides a method for the application of a controlled alkali-burn injury to the cornea, administration of a pharmacological compound of interest, and visualization of the result. This method could prove instrumental for studying the mechanisms and opportunities for intervention in corneal NV and other neovascular disorders.
Medicine, Issue 86, Alkali-burn Injury, Corneal Neovascularization (NV), Corneal Blindness, Angiogenesis, Inflammation, Hemangiogenesis, Lymphangiogenesis
Play Button
Slow-release Drug Delivery through Elvax 40W to the Rat Retina: Implications for the Treatment of Chronic Conditions
Authors: Lavinia Fiorani, Rita Maccarone, Nilisha Fernando, Linda Colecchi, Silvia Bisti, Krisztina Valter.
Institutions: University of L'Aquila, ARC Centre of Excellence in Vision Science, Australian National University, Australian National University.
Diseases of the retina are difficult to treat as the retina lies deep within the eye. Invasive methods of drug delivery are often needed to treat these diseases. Chronic retinal diseases such as retinal oedema or neovascularization usually require multiple intraocular injections to effectively treat the condition. However, the risks associated with these injections increase with repeated delivery of the drug. Therefore, alternative delivery methods need to be established in order to minimize the risks of reinjection. Several other investigations have developed methods to deliver drugs over extended time, through materials capable of releasing chemicals slowly into the eye. In this investigation, we outline the use of Elvax 40W, a copolymer resin, to act as a vehicle for drug delivery to the adult rat retina. The resin is made and loaded with the drug. The drug-resin complex is then implanted into the vitreous cavity, where it will slowly release the drug over time. This method was tested using 2-amino-4-phosphonobutyrate (APB), a glutamate analogue that blocks the light response of the retina. It was demonstrated that the APB was slowly released from the resin, and was able to block the retinal response by 7 days after implantation. This indicates that slow-release drug delivery using this copolymer resin is effective for treating the retina, and could be used therapeutically with further testing.
Medicine, Issue 91, slow-release drug delivery, Elvax 40W, co-polymer resin, eye, retina, rat, APB, retinal degeneration, treatment of chronic retinal conditions
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.