JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Quantitative ex-vivo micro-computed tomographic imaging of blood vessels and necrotic regions within tumors.
PLoS ONE
Techniques for visualizing and quantifying the microvasculature of tumors are essential not only for studying angiogenic processes but also for monitoring the effects of anti-angiogenic treatments. Given the relatively limited information that can be gleaned from conventional 2-D histological analyses, there has been considerable interest in methods that enable the 3-D assessment of the vasculature. To this end, we employed a polymerizing intravascular contrast medium (Microfil) and micro-computed tomography (micro-CT) in combination with a maximal spheres direct 3-D analysis method to visualize and quantify ex-vivo vessel structural features, and to define regions of hypoperfusion within tumors that would be indicative of necrosis. Employing these techniques we quantified the effects of a vascular disrupting agent on the tumor vasculature. The methods described herein for quantifying whole tumor vascularity represent a significant advance in the 3-D study of tumor angiogenesis and evaluation of novel therapeutics, and will also find potential application in other fields where quantification of blood vessel structure and necrosis are important outcome parameters.
ABSTRACT
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated, respectively. DCE-US allows for real-time imaging of vascularization in bone metastases after injection of microbubbles7. In conclusion, in a model of site-specific breast cancer bone metastases multi-modal imaging techniques including MRI, VCT and US offer complementary information on morphology and functional parameters of angiogenesis in these skeletal lesions.
23 Related JoVE Articles!
Play Button
Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature
Authors: Andrew J. McElrone, Brendan Choat, Dilworth Y. Parkinson, Alastair A. MacDowell, Craig R. Brodersen.
Institutions: U.S. Department of Agriculture, University of California - Davis, University of Western Sydney, Lawrence Berkeley National Lab, University of Florida .
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function.
Plant Biology, Issue 74, Cellular Biology, Molecular Biology, Biophysics, Structural Biology, Physics, Environmental Sciences, Agriculture, botany, environmental effects (biological, animal and plant), plants, radiation effects (biological, animal and plant), CT scans, advanced visualization techniques, xylem networks, plant vascular function, synchrotron, x-ray micro-tomography, ALS 8.3.2, xylem, phloem, tomography, imaging
50162
Play Button
Cerebrovascular Casting of the Adult Mouse for 3D Imaging and Morphological Analysis
Authors: Espen J. Walker, Fanxia Shen, William L. Young, Hua Su.
Institutions: University of California, San Francisco, University of California, San Francisco, University of California, San Francisco.
Vascular imaging is crucial in the clinical diagnosis and management of cerebrovascular diseases, such as brain arteriovenous malformations (BAVMs). Animal models are necessary for studying the etiopathology and potential therapies of cerebrovascular diseases. Imaging the vasculature in large animals is relatively easy. However, developing vessel imaging methods of murine brain disease models is desirable due to the cost and availability of genetically-modified mouse lines. Imaging the murine cerebral vascular tree is a challenge. In humans and larger animals, the gold standard for assessing the angioarchitecture at the macrovascular (conductance) level is x-ray catheter contrast-based angiography, a method not suited for small rodents. In this article, we present a method of cerebrovascular casting that produces a durable skeleton of the entire vascular bed, including arteries, veins, and capillaries that may be analyzed using many different modalities. Complete casting of the microvessels of the mouse cerebrovasculature can be difficult; however, these challenges are addressed in this step-by-step protocol. Through intracardial perfusion of the vascular casting material, all vessels of the body are casted. The brain can then be removed and clarified using the organic solvent methyl salicylate. Three dimensional imaging of the brain blood vessels can be visualized simply and inexpensively with any conventional brightfield microscope or dissecting microscope. The casted cerebrovasculature can also be imaged and quantified using micro-computed tomography (micro-CT)1. In addition, after being imaged, the casted brain can be embedded in paraffin for histological analysis. The benefit of this vascular casting method as compared to other techniques is its broad adaptation to various analytic tools, including brightfield microscopic analysis, CT scanning due to the radiopaque characteristic of the material, as well as histological and immunohistochemical analysis. This efficient use of tissue can save animal usage and reduce costs. We have recently demonstrated application of this method to visualize the irregular blood vessels in a mouse model of adult BAVM at a microscopic level2, and provide additional images of the malformed vessels imaged by micro-CT scan. Although this method has drawbacks and may not be ideal for all types of analyses, it is a simple, practical technique that can be easily learned and widely applied to vascular casting of blood vessels throughout the body.
Neuroscience, Issue 57, vessel, vascular cast, capillary, cerebrovasculature, brain, blood, AVM, fistula
2958
Play Button
Osmotic Drug Delivery to Ischemic Hindlimbs and Perfusion of Vasculature with Microfil for Micro-Computed Tomography Imaging
Authors: Xiaobing Liu, Toya Terry, Su Pan, Zhongwei Yang, James T. Willerson, Richard A. F. Dixon, Qi Liu.
Institutions: The Texas Heart Institute at St. Luke's Episcopal Hospital, Shanghai Jiao Tong University.
Preclinical research in animal models of peripheral arterial disease plays a vital role in testing the efficacy of therapeutic agents designed to stimulate microcirculation. The choice of delivery method for these agents is important because the route of administration profoundly affects the bioactivity and efficacy of these agents1,2. In this article, we demonstrate how to locally administer a substance in ischemic hindlimbs by using a catheterized osmotic pump. This pump can deliver a fixed volume of aqueous solution continuously for an allotted period of time. We also present our mouse model of unilateral hindlimb ischemia induced by ligation of the common femoral artery proximal to the origin of profunda femoris and epigastrica arteries in the left hindlimb. Lastly, we describe the in vivo cannulation and ligation of the infrarenal abdominal aorta and perfusion of the hindlimb vasculature with Microfil, a silicone radiopaque casting agent. Microfil can perfuse and fill the entire vascular bed (arterial and venous), and because we have ligated the major vascular conduit for exit, the agent can be retained in the vasculature for future ex vivo imaging with the use of small specimen micro-CT3.
Medicine, Issue 76, Immunology, Biomedical Engineering, Bioengineering, Molecular Biology, Cellular Biology, Pharmacology, Cardiovascular Diseases, Therapeutics, Hindlimb ischemia, ischemia, osmotic pump, drug delivery, Microfil, micro-computed tomography, 3D vessel imaging, vascular medicine, vasculature, CT, tomography, imaging, animal model
50364
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
3040
Play Button
Universal Hand-held Three-dimensional Optoacoustic Imaging Probe for Deep Tissue Human Angiography and Functional Preclinical Studies in Real Time
Authors: Xosé Deán-Ben, Thomas Felix Fehm, Daniel Razansky.
Institutions: Helmholtz Zentrum München, Technische Universität München.
The exclusive combination of high optical contrast and excellent spatial resolution makes optoacoustics (photoacoustics) ideal for simultaneously attaining anatomical, functional and molecular contrast in deep optically opaque tissues. While enormous potential has been recently demonstrated in the application of optoacoustics for small animal research, vast efforts have also been undertaken in translating this imaging technology into clinical practice. We present here a newly developed optoacoustic tomography approach capable of delivering high resolution and spectrally enriched volumetric images of tissue morphology and function in real time. A detailed description of the experimental protocol for operating with the imaging system in both hand-held and stationary modes is provided and showcased for different potential scenarios involving functional and molecular studies in murine models and humans. The possibility for real time visualization in three dimensions along with the versatile handheld design of the imaging probe make the newly developed approach unique among the pantheon of imaging modalities used in today’s preclinical research and clinical practice.
Physiology, Issue 93, Optoacoustic tomography, photoacoustic imaging, hand-held probe, volumetric imaging, real-time tomography, five dimensional imaging, clinical imaging, functional imaging, molecular imaging, preclinical research
51864
Play Button
Optical Frequency Domain Imaging of Ex vivo Pulmonary Resection Specimens: Obtaining One to One Image to Histopathology Correlation
Authors: Lida P. Hariri, Matthew B. Applegate, Mari Mino-Kenudson, Eugene J. Mark, Brett E. Bouma, Guillermo J. Tearney, Melissa J. Suter.
Institutions: Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School.
Lung cancer is the leading cause of cancer-related deaths1. Squamous cell and small cell cancers typically arise in association with the conducting airways, whereas adenocarcinomas are typically more peripheral in location. Lung malignancy detection early in the disease process may be difficult due to several limitations: radiological resolution, bronchoscopic limitations in evaluating tissue underlying the airway mucosa and identifying early pathologic changes, and small sample size and/or incomplete sampling in histology biopsies. High resolution imaging modalities, such as optical frequency domain imaging (OFDI), provide non-destructive, large area 3-dimensional views of tissue microstructure to depths approaching 2 mm in real time (Figure 1)2-6. OFDI has been utilized in a variety of applications, including evaluation of coronary artery atherosclerosis6,7 and esophageal intestinal metaplasia and dysplasia6,8-10. Bronchoscopic OCT/OFDI has been demonstrated as a safe in vivo imaging tool for evaluating the pulmonary airways11-23 (Animation). OCT has been assessed in pulmonary airways16,23 and parenchyma17,22 of animal models and in vivo human airway14,15. OCT imaging of normal airway has demonstrated visualization of airway layering and alveolar attachments, and evaluation of dysplastic lesions has been found useful in distinguishing grades of dysplasia in the bronchial mucosa11,12,20,21. OFDI imaging of bronchial mucosa has been demonstrated in a short bronchial segment (0.8 cm)18. Additionally, volumetric OFDI spanning multiple airway generations in swine and human pulmonary airways in vivo has been described19. Endobronchial OCT/OFDI is typically performed using thin, flexible catheters, which are compatible with standard bronchoscopic access ports. Additionally, OCT and OFDI needle-based probes have recently been developed, which may be used to image regions of the lung beyond the airway wall or pleural surface17. While OCT/OFDI has been utilized and demonstrated as feasible for in vivo pulmonary imaging, no studies with precisely matched one-to-one OFDI:histology have been performed. Therefore, specific imaging criteria for various pulmonary pathologies have yet to be developed. Histopathological counterparts obtained in vivo consist of only small biopsy fragments, which are difficult to correlate with large OFDI datasets. Additionally, they do not provide the comprehensive histology needed for registration with large volume OFDI. As a result, specific imaging features of pulmonary pathology cannot be developed in the in vivo setting. Precisely matched, one-to-one OFDI and histology correlation is vital to accurately evaluate features seen in OFDI against histology as a gold standard in order to derive specific image interpretation criteria for pulmonary neoplasms and other pulmonary pathologies. Once specific imaging criteria have been developed and validated ex vivo with matched one-to-one histology, the criteria may then be applied to in vivo imaging studies. Here, we present a method for precise, one to one correlation between high resolution optical imaging and histology in ex vivo lung resection specimens. Throughout this manuscript, we describe the techniques used to match OFDI images to histology. However, this method is not specific to OFDI and can be used to obtain histology-registered images for any optical imaging technique. We performed airway centered OFDI with a specialized custom built bronchoscopic 2.4 French (0.8 mm diameter) catheter. Tissue samples were marked with tissue dye, visible in both OFDI and histology. Careful orientation procedures were used to precisely correlate imaging and histological sampling locations. The techniques outlined in this manuscript were used to conduct the first demonstration of volumetric OFDI with precise correlation to tissue-based diagnosis for evaluating pulmonary pathology24. This straightforward, effective technique may be extended to other tissue types to provide precise imaging to histology correlation needed to determine fine imaging features of both normal and diseased tissues.
Bioengineering, Issue 71, Medicine, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Pathology, Surgery, Bronchoscopic imaging, In vivo optical microscopy, Optical imaging, Optical coherence tomography, Optical frequency domain imaging, Histology correlation, animal model, histopathology, airway, lung, biopsy, imaging
3855
Play Button
Quantitative Analysis and Characterization of Atherosclerotic Lesions in the Murine Aortic Sinus
Authors: Daniel E. Venegas-Pino, Nicole Banko, Mohammed I. Khan, Yuanyuan Shi, Geoff H. Werstuck.
Institutions: McMaster University, McMaster University.
Atherosclerosis is a disease of the large arteries and a major underlying cause of myocardial infarction and stroke. Several different mouse models have been developed to facilitate the study of the molecular and cellular pathophysiology of this disease. In this manuscript we describe specific techniques for the quantification and characterization of atherosclerotic lesions in the murine aortic sinus and ascending aorta. The advantage of this procedure is that it provides an accurate measurement of the cross-sectional area and total volume of the lesion, which can be used to compare atherosclerotic progression across different treatment groups. This is possible through the use of the valve leaflets as an anatomical landmark, together with careful adjustment of the sectioning angle. We also describe basic staining methods that can be used to begin to characterize atherosclerotic progression. These can be further modified to investigate antigens of specific interest to the researcher. The described techniques are generally applicable to a wide variety of existing and newly created dietary and genetically-induced models of atherogenesis.
Medicine, Issue 82, atherosclerosis, atherosclerotic lesion, Mouse Model, aortic sinus, tissue preparation and sectioning, Immunohistochemistry
50933
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Dual-phase Cone-beam Computed Tomography to See, Reach, and Treat Hepatocellular Carcinoma during Drug-eluting Beads Transarterial Chemo-embolization
Authors: Vania Tacher, MingDe Lin, Nikhil Bhagat, Nadine Abi Jaoudeh, Alessandro Radaelli, Niels Noordhoek, Bart Carelsen, Bradford J. Wood, Jean-François Geschwind.
Institutions: The Johns Hopkins Hospital, Philips Research North America, National Institutes of Health, Philips Healthcare.
The advent of cone-beam computed tomography (CBCT) in the angiography suite has been revolutionary in interventional radiology. CBCT offers 3 dimensional (3D) diagnostic imaging in the interventional suite and can enhance minimally-invasive therapy beyond the limitations of 2D angiography alone. The role of CBCT has been recognized in transarterial chemo-embolization (TACE) treatment of hepatocellular carcinoma (HCC). The recent introduction of a CBCT technique: dual-phase CBCT (DP-CBCT) improves intra-arterial HCC treatment with drug-eluting beads (DEB-TACE). DP-CBCT can be used to localize liver tumors with the diagnostic accuracy of multi-phasic multidetector computed tomography (M-MDCT) and contrast enhanced magnetic resonance imaging (CE-MRI) (See the tumor), to guide intra-arterially guidewire and microcatheter to the desired location for selective therapy (Reach the tumor), and to evaluate treatment success during the procedure (Treat the tumor). The purpose of this manuscript is to illustrate how DP-CBCT is used in DEB-TACE to see, reach, and treat HCC.
Medicine, Issue 82, Carcinoma, Hepatocellular, Tomography, X-Ray Computed, Surgical Procedures, Minimally Invasive, Digestive System Diseases, Diagnosis, Therapeutics, Surgical Procedures, Operative, Equipment and Supplies, Transarterial chemo-embolization, Hepatocellular carcinoma, Dual-phase cone-beam computed tomography, 3D roadmap, Drug-Eluting Beads
50795
Play Button
In vivo Imaging of Tumor Angiogenesis using Fluorescence Confocal Videomicroscopy
Authors: Victor Fitoussi, Nathalie Faye, Foucauld Chamming's, Olivier Clement, Charles-Andre Cuenod, Laure S. Fournier.
Institutions: Université Paris Descartes Sorbonne Paris Cité, INSERM UMR-S970, Hôpital Européen Georges Pompidou, Service de Radiologie.
Fibered confocal fluorescence in vivo imaging with a fiber optic bundle uses the same principle as fluorescent confocal microscopy. It can excite fluorescent in situ elements through the optical fibers, and then record some of the emitted photons, via the same optical fibers. The light source is a laser that sends the exciting light through an element within the fiber bundle and as it scans over the sample, recreates an image pixel by pixel. As this scan is very fast, by combining it with dedicated image processing software, images in real time with a frequency of 12 frames/sec can be obtained. We developed a technique to quantitatively characterize capillary morphology and function, using a confocal fluorescence videomicroscopy device. The first step in our experiment was to record 5 sec movies in the four quadrants of the tumor to visualize the capillary network. All movies were processed using software (ImageCell, Mauna Kea Technology, Paris France) that performs an automated segmentation of vessels around a chosen diameter (10 μm in our case). Thus, we could quantify the 'functional capillary density', which is the ratio between the total vessel area and the total area of the image. This parameter was a surrogate marker for microvascular density, usually measured using pathology tools. The second step was to record movies of the tumor over 20 min to quantify leakage of the macromolecular contrast agent through the capillary wall into the interstitium. By measuring the ratio of signal intensity in the interstitium over that in the vessels, an 'index leakage' was obtained, acting as a surrogate marker for capillary permeability.
Medicine, Issue 79, Cancer, Biological, Microcirculation, optical imaging devices (design and techniques), Confocal videomicroscopy, microcirculation, capillary leakage, FITC-Dextran, angiogenesis
50347
Play Button
A Novel High-resolution In vivo Imaging Technique to Study the Dynamic Response of Intracranial Structures to Tumor Growth and Therapeutics
Authors: Kelly Burrell, Sameer Agnihotri, Michael Leung, Ralph DaCosta, Richard Hill, Gelareh Zadeh.
Institutions: Hospital for Sick Children, Toronto Medical Discovery Tower, Princess Margaret Hospital, Toronto Western Hospital.
We have successfully integrated previously established Intracranial window (ICW) technology 1-4 with intravital 2-photon confocal microscopy to develop a novel platform that allows for direct long-term visualization of tissue structure changes intracranially. Imaging at a single cell resolution in a real-time fashion provides supplementary dynamic information beyond that provided by standard end-point histological analysis, which looks solely at 'snap-shot' cross sections of tissue. Establishing this intravital imaging technique in fluorescent chimeric mice, we are able to image four fluorescent channels simultaneously. By incorporating fluorescently labeled cells, such as GFP+ bone marrow, it is possible to track the fate of these cells studying their long-term migration, integration and differentiation within tissue. Further integration of a secondary reporter cell, such as an mCherry glioma tumor line, allows for characterization of cell:cell interactions. Structural changes in the tissue microenvironment can be highlighted through the addition of intra-vital dyes and antibodies, for example CD31 tagged antibodies and Dextran molecules. Moreover, we describe the combination of our ICW imaging model with a small animal micro-irradiator that provides stereotactic irradiation, creating a platform through which the dynamic tissue changes that occur following the administration of ionizing irradiation can be assessed. Current limitations of our model include penetrance of the microscope, which is limited to a depth of up to 900 μm from the sub cortical surface, limiting imaging to the dorsal axis of the brain. The presence of the skull bone makes the ICW a more challenging technical procedure, compared to the more established and utilized chamber models currently used to study mammary tissue and fat pads 5-7. In addition, the ICW provides many challenges when optimizing the imaging.
Cancer Biology, Issue 76, Medicine, Biomedical Engineering, Cellular Biology, Molecular Biology, Genetics, Neuroscience, Neurobiology, Biophysics, Anatomy, Physiology, Surgery, Intracranial Window, In vivo imaging, Stereotactic radiation, Bone Marrow Derived Cells, confocal microscopy, two-photon microscopy, drug-cell interactions, drug kinetics, brain, imaging, tumors, animal model
50363
Play Button
The Corneal Micropocket Assay: A Model of Angiogenesis in the Mouse Eye
Authors: Amy E. Birsner, Ofra Benny, Robert J. D'Amato.
Institutions: Boston Children's Hospital, The Hebrew University of Jerusalem, Harvard Medical School.
The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.
Neuroscience, Issue 90, Angiogensis, neovasculatization, in vivo assay, model, fibroblast growth factor, vascular endothelial growth factor
51375
Play Button
Murine Endoscopy for In Vivo Multimodal Imaging of Carcinogenesis and Assessment of Intestinal Wound Healing and Inflammation
Authors: Markus Brückner, Philipp Lenz, Tobias M. Nowacki, Friederike Pott, Dirk Foell, Dominik Bettenworth.
Institutions: University Hospital Münster, University Children's Hospital Münster.
Mouse models are widely used to study pathogenesis of human diseases and to evaluate diagnostic procedures as well as therapeutic interventions preclinically. However, valid assessment of pathological alterations often requires histological analysis, and when performed ex vivo, necessitates death of the animal. Therefore in conventional experimental settings, intra-individual follow-up examinations are rarely possible. Thus, development of murine endoscopy in live mice enables investigators for the first time to both directly visualize the gastrointestinal mucosa and also repeat the procedure to monitor for alterations. Numerous applications for in vivo murine endoscopy exist, including studying intestinal inflammation or wound healing, obtaining mucosal biopsies repeatedly, and to locally administer diagnostic or therapeutic agents using miniature injection catheters. Most recently, molecular imaging has extended diagnostic imaging modalities allowing specific detection of distinct target molecules using specific photoprobes. In conclusion, murine endoscopy has emerged as a novel cutting-edge technology for diagnostic experimental in vivo imaging and may significantly impact on preclinical research in various fields.
Medicine, Issue 90, gastroenterology, in vivo imaging, murine endoscopy, diagnostic imaging, carcinogenesis, intestinal wound healing, experimental colitis
51875
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Monitoring Functionality and Morphology of Vasculature Recruited by Factors Secreted by Fast-growing Tumor-generating Cells
Authors: Shiran Ferber, Galia Tiram, Ronit Satchi-Fainaro.
Institutions: Tel Aviv University.
The subcutaneous matrigel plug assay in mice is a method of choice for the in vivo evaluation of pro- and anti-angiogenic factors. In this method, desired factors are introduced into cold-liquid ECM-mimic gel which, after subcutaneous injection, solidifies to form an environment mimicking the cancer milieu. This matrix permits the penetration of host cells, such as endothelial cells, and therefore, the formation of vasculature. Herein we propose a new modified matrigel plug assay, which can be exploited to illustrate the angiogenic potential of a pool of factors secreted by cancer cells, as opposed to a specific factor (e.g., bFGF and VEGF) or agent. The plug containing ECM-mimic gel is utilized to introduce the host (i.e., mouse) with a pool of factors secreted to the C.M. of fast-growing tumor-generating glioblastoma cells. We have previously described an extensive comparison of the angiogenic potential of U-87 MG human glioblastoma and its dormant-derived clone, in this system model, showing induced angiogenesis in the U-87 MG parental cells. The C.M. is prepared by filtering collected media from confluent tissue culture plates of either cell line following 48 hr incubation. Hence, it contains only factors secreted by the cells, without the cells themselves. Described here is the combination of two imaging modalities, microbubbles contrast-enhanced ultrasound imaging and intravital fibered-confocal endomicroscopy, for an accurate, real-time characterization of the extent, morphology and functionality of newly-formed blood vessels within the plugs.
Cancer Biology, Issue 93, Matrigel plug, angiogenesis, microbubbles, ultrasound, fibered-confocal endomicroscopy, conditioned media.
51525
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
51900
Play Button
Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer
Authors: Elizabeth S. Nakasone, Hanne A. Askautrud, Mikala Egeblad.
Institutions: Watson School of Biological Sciences, Cold Spring Harbor Laboratory, University of Oslo and Oslo University Hospital.
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Cancer Biology, Issue 73, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Oncology, Pharmacology, Surgery, Tumor Microenvironment, Intravital imaging, chemotherapy, Breast cancer, time-lapse, mouse models, cancer cell death, stromal cell migration, cancer, imaging, transgenic, animal model
50088
Play Button
Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging
Authors: Jill J. Weyers, Dara D. Carlson, Charles E. Murry, Stephen M. Schwartz, William M. Mahoney, Jr..
Institutions: University of Washington, University of Washington.
Visualization of the vasculature is becoming increasingly important for understanding many different disease states. While several techniques exist for imaging vasculature, few are able to visualize the vascular network as a whole while extending to a resolution that includes the smaller vessels1,2. Additionally, many vascular casting techniques destroy the surrounding tissue, preventing further analysis of the sample3-5. One method which circumvents these issues is micro-Computed Tomography (μCT). μCT imaging can scan at resolutions <10 microns, is capable of producing 3D reconstructions of the vascular network, and leaves the tissue intact for subsequent analysis (e.g., histology and morphometry)6-11. However, imaging vessels by ex vivo μCT methods requires that the vessels be filled with a radiopaque compound. As such, the accurate representation of vasculature produced by μCT imaging is contingent upon reliable and complete filling of the vessels. In this protocol, we describe a technique for filling mouse coronary vessels in preparation for μCT imaging. Two predominate techniques exist for filling the coronary vasculature: in vivo via cannulation and retrograde perfusion of the aorta (or a branch off the aortic arch) 12-14, or ex vivo via a Langendorff perfusion system 15-17. Here we describe an in vivo aortic cannulation method which has been specifically designed to ensure filling of all vessels. We use a low viscosity radiopaque compound called Microfil which can perfuse through the smallest vessels to fill all the capillaries, as well as both the arterial and venous sides of the vascular network. Vessels are perfused with buffer using a pressurized perfusion system, and then filled with Microfil. To ensure that Microfil fills the small higher resistance vessels, we ligate the large branches emanating from the aorta, which diverts the Microfil into the coronaries. Once filling is complete, to prevent the elastic nature of cardiac tissue from squeezing Microfil out of some vessels, we ligate accessible major vascular exit points immediately after filling. Therefore, our technique is optimized for complete filling and maximum retention of the filling agent, enabling visualization of the complete coronary vascular network – arteries, capillaries, and veins alike.
Medicine, Issue 60, Vascular biology, heart, coronary vessels, mouse, micro Computed Tomography (μCT) imaging, Microfil
3740
Play Button
Flexible Colonoscopy in Mice to Evaluate the Severity of Colitis and Colorectal Tumors Using a Validated Endoscopic Scoring System
Authors: Tomohiro Kodani, Alex Rodriguez-Palacios, Daniele Corridoni, Loris Lopetuso, Luca Di Martino, Brian Marks, James Pizarro, Theresa Pizarro, Amitabh Chak, Fabio Cominelli.
Institutions: Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland.
The use of modern endoscopy for research purposes has greatly facilitated our understanding of gastrointestinal pathologies. In particular, experimental endoscopy has been highly useful for studies that require repeated assessments in a single laboratory animal, such as those evaluating mechanisms of chronic inflammatory bowel disease and the progression of colorectal cancer. However, the methods used across studies are highly variable. At least three endoscopic scoring systems have been published for murine colitis and published protocols for the assessment of colorectal tumors fail to address the presence of concomitant colonic inflammation. This study develops and validates a reproducible endoscopic scoring system that integrates evaluation of both inflammation and tumors simultaneously. This novel scoring system has three major components: 1) assessment of the extent and severity of colorectal inflammation (based on perianal findings, transparency of the wall, mucosal bleeding, and focal lesions), 2) quantitative recording of tumor lesions (grid map and bar graph), and 3) numerical sorting of clinical cases by their pathological and research relevance based on decimal units with assigned categories of observed lesions and endoscopic complications (decimal identifiers). The video and manuscript presented herein were prepared, following IACUC-approved protocols, to allow investigators to score their own experimental mice using a well-validated and highly reproducible endoscopic methodology, with the system option to differentiate distal from proximal endoscopic colitis (D-PECS).
Medicine, Issue 80, Crohn's disease, ulcerative colitis, colon cancer, Clostridium difficile, SAMP mice, DSS/AOM-colitis, decimal scoring identifier
50843
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
1564
Play Button
Monitoring Tumor Metastases and Osteolytic Lesions with Bioluminescence and Micro CT Imaging
Authors: Ed Lim, Kshitij Modi, Anna Christensen, Jeff Meganck, Stephen Oldfield, Ning Zhang.
Institutions: Caliper Life Sciences.
Following intracardiac delivery of MDA-MB-231-luc-D3H2LN cells to Nu/Nu mice, systemic metastases developed in the injected animals. Bioluminescence imaging using IVIS Spectrum was employed to monitor the distribution and development of the tumor cells following the delivery procedure including DLIT reconstruction to measure the tumor signal and its location. Development of metastatic lesions to the bone tissues triggers osteolytic activity and lesions to tibia and femur were evaluated longitudinally using micro CT. Imaging was performed using a Quantum FX micro CT system with fast imaging and low X-ray dose. The low radiation dose allows multiple imaging sessions to be performed with a cumulative X-ray dosage far below LD50. A mouse imaging shuttle device was used to sequentially image the mice with both IVIS Spectrum and Quantum FX achieving accurate animal positioning in both the bioluminescence and CT images. The optical and CT data sets were co-registered in 3-dimentions using the Living Image 4.1 software. This multi-mode approach allows close monitoring of tumor growth and development simultaneously with osteolytic activity.
Medicine, Issue 50, osteolytic lesions, micro CT, tumor, bioluminescence, in vivo, imaging, IVIS, luciferase, low dose, co-registration, 3D reconstruction
2775
Play Button
In vivo Bioluminescent Imaging of Mammary Tumors Using IVIS Spectrum
Authors: Ed Lim, Kshitij D Modi, JaeBeom Kim.
Institutions: Caliper Life Sciences.
4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
Cellular Biology, Issue 26, tumor, mammary, mouse, bioluminescence, in vivo, imaging, IVIS, luciferase, luciferin
1210
Play Button
Contrast Enhanced Vessel Imaging using MicroCT
Authors: Suresh I. Prajapati, Charles Keller.
Institutions: University of Texas Health Science Center at San Antonio , University of Texas Health Science Center at San Antonio , University of Texas Health Science Center at San Antonio , University of Texas Health Science Center at San Antonio .
Microscopic computed tomography (microCT) offers high-resolution volumetric imaging of the anatomy of living small animals. However, the contrast between different soft tissues and body fluids is inherently poor in micro-CT images 1. Under these circumstances, visualization of blood vessels becomes a nearly impossible task. To overcome this and to improve the visualization of blood vessels exogenous contrast agents can be used. Herein, we present a methodology for visualizing the vascular network in a rodent model. By using a long-acting aqueous colloidal polydisperse iodinated blood-pool contrast agent, eXIA 160XL, we optimized image acquisition parameters and volume-rendering techniques for finding blood vessels in live animals. Our findings suggest that, to achieve a superior contrast between bone and soft tissue from vessel, multiple-frames (at least 5-8/ frames per view), and 360-720 views (for a full 360° rotation) acquisitions were mandatory. We have also demonstrated the use of a two-dimensional transfer function (where voxel color and opacity was assigned in proportion to CT value and gradient magnitude), in visualizing the anatomy and highlighting the structure of interest, the blood vessel network. This promising work lays a foundation for the qualitative and quantitative assessment of anti-angiogenesis preclinical studies using transgenic or xenograft tumor-bearing mice.
Medicine, Issue 47, vessel imaging, eXIA 160XL, microCT, advanced visualization, 2DTF
2377
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.