JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Perfectionism and anxiety: a paradox in intellectual giftedness?
Numerous authors reported a prevalence of perfectionism in gifted populations. In addition, an unhealthy form of perfectionism that leads to anxiety disorder has been described. Using self-report measures (CAPS and R-CMAS) with 132 children, we hypothesized that intellectually gifted children express a higher level of perfectionism and anxiety. Our results pointed out a paradox: the gifted group obtained a higher self-oriented perfectionism score than the control group in 6th grade, but present the same level of anxiety. In contrast, the gifted group showed the same level of perfectionism than non-gifted 5(th) graders, but reported a higher anxiety level. Thus, the interplay between perfectionism and anxiety appears to be more complex than a simple linear relationship in giftedness.
This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety.1 Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity.2 In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers.3 These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor).3 Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience.3 Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST.4 In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task.1 Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and/or neuroendocrine indices (e.g. the stress hormone cortisol) in response to the TSST. Many investigators have adopted salivary sampling for stress markers such as cortisol and alpha-amylase (a marker of autonomic nervous system activation) as an alternative to blood sampling to reduce the confounding stress of blood-collection techniques. In addition to changes experienced by an individual completing the TSST, researchers can compare changes between different treatment groups (e.g. clinical versus healthy control samples) or the effectiveness of stress-reducing interventions.1
20 Related JoVE Articles!
Play Button
A Novel Method of Drug Administration to Multiple Zebrafish (Danio rerio) and the Quantification of Withdrawal
Authors: Adam Holcombe, Melike Schalomon, Trevor James Hamilton.
Institutions: MacEwan University.
Anxiety testing in zebrafish is often studied in combination with the application of pharmacological substances. In these studies, fish are routinely netted and transported between home aquaria and dosing tanks. In order to enhance the ease of compound administration, a novel method for transferring fish between tanks for drug administration was developed. Inserts that are designed for spawning were used to transfer groups of fish into the drug solution, allowing accurate dosing of all fish in the group. This increases the precision and efficiency of dosing, which becomes very important in long schedules of repeated drug administration. We implemented this procedure for use in a study examining the behavior of zebrafish in the light/dark test after administering ethanol with differing 21 day schedules. In fish exposed to daily-moderate amounts of alcohol there was a significant difference in location preference after 2 days of withdrawal when compared to the control group. However, a significant difference in location preference in a group exposed to weekly-binge administration was not observed. This protocol can be generalized for use with all types of compounds that are water-soluble and may be used in any situation when the behavior of fish during or after long schedules of drug administration is being examined. The light/dark test is also a valuable method of assessing withdrawal-induced changes in anxiety.
Neuroscience, Issue 93, Zebrafish, Ethanol, Behavior, Anxiety, Pharmacology, Fish, Neuroscience, Drug administration, Scototaxis
Play Button
Isolation of Human Atrial Myocytes for Simultaneous Measurements of Ca2+ Transients and Membrane Currents
Authors: Niels Voigt, Xiao-Bo Zhou, Dobromir Dobrev.
Institutions: University of Duisburg-Essen , University of Heidelberg .
The study of electrophysiological properties of cardiac ion channels with the patch-clamp technique and the exploration of cardiac cellular Ca2+ handling abnormalities requires isolated cardiomyocytes. In addition, the possibility to investigate myocytes from patients using these techniques is an invaluable requirement to elucidate the molecular basis of cardiac diseases such as atrial fibrillation (AF).1 Here we describe a method for isolation of human atrial myocytes which are suitable for both patch-clamp studies and simultaneous measurements of intracellular Ca2+ concentrations. First, right atrial appendages obtained from patients undergoing open heart surgery are chopped into small tissue chunks ("chunk method") and washed in Ca2+-free solution. Then the tissue chunks are digested in collagenase and protease containing solutions with 20 μM Ca2+. Thereafter, the isolated myocytes are harvested by filtration and centrifugation of the tissue suspension. Finally, the Ca2+ concentration in the cell storage solution is adjusted stepwise to 0.2 mM. We briefly discuss the meaning of Ca2+ and Ca2+ buffering during the isolation process and also provide representative recordings of action potentials and membrane currents, both together with simultaneous Ca2+ transient measurements, performed in these isolated myocytes.
Cellular Biology, Issue 77, Medicine, Molecular Biology, Physiology, Anatomy, Cardiology, Pharmacology, human atrial myocytes, cell isolation, collagenase, calcium transient, calcium current, patch-clamp, ion currents, isolation, cell culture, myocytes, cardiomyocytes, electrophysiology, patch clamp
Play Button
The Tail Suspension Test
Authors: Adem Can, David T. Dao, Chantelle E. Terrillion, Sean C. Piantadosi, Shambhu Bhat, Todd D. Gould.
Institutions: University of Maryland School of Medicine, Tulane University School of Medicine, University of Maryland , University of Maryland School of Medicine.
The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test.
Neuroscience, Issue 59, animal models, behavioral analysis, neuroscience, neurobiology, mood disorder, depression, mood stabilizer, antidepressant
Play Button
Marble Burying and Nestlet Shredding as Tests of Repetitive, Compulsive-like Behaviors in Mice
Authors: Mariana Angoa-Pérez, Michael J. Kane, Denise I. Briggs, Dina M. Francescutti, Donald M. Kuhn.
Institutions: Wayne State University School of Medicine.
Obsessive-compulsive disorder (OCD) and autism spectrum disorders (ASD) are serious and debilitating psychiatric conditions and each constitutes a significant public health concern, particularly in children. Both of these conditions are highlighted by the repeated expression of meaningless behaviors. Individuals with OCD often show checking, frequent hand washing, and counting. Children with ASDs also engage in repetitive tapping, arm or hand flapping, and rocking. These behaviors can vary widely in intensity and frequency of expression. More intense forms of repetitive behaviors can even result in injury (e.g. excessive grooming, hand washing, and self-stimulation). These behaviors are therefore very disruptive and make normal social discourse difficult. Treatment options for repetitive behaviors in OCD and ASDs are somewhat limited and there is great interest in developing more effective therapies for each condition. Numerous animal models for evaluating compulsive-like behaviors have been developed over the past three decades. Perhaps the animal models with the greatest validity and ease of use are the marble burying test and the nestlet shredding test. Both tests take advantage of the fact that the target behaviors occur spontaneously in mice. In the marble burying test, 20 marbles are arrayed on the surface of clean bedding. The number of marbles buried in a 30 min session is scored by investigators blind to the treatment or status of the subjects. In the nestlet shredding test, a nestlet comprised of pulped cotton fiber is preweighed and placed on top of cage bedding and the amount of the nestlet remaining intact after a 30 min test session is determined. Presently, we describe protocols for and show movie documentation of marble burying and nestlet shredding. Both tests are easily and accurately scored and each is sensitive to small changes in the expression of compulsive-like behaviors that result from genetic manipulations, disease, or head injury.
Behavior, Issue 82, compulsive-like behaviors, obsessive-compulsive disorder (OCD), autism spectrum disorders (ASD), marble burying, nestlet shredding, TPH2 KO mice
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases
Authors: Kathleen S. Tatem, James L. Quinn, Aditi Phadke, Qing Yu, Heather Gordish-Dressman, Kanneboyina Nagaraju.
Institutions: Children's National Medical Center, George Washington University School of Medicine and Health Sciences.
The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.
Behavior, Issue 91, open field activity, functional testing, behavioral testing, skeletal muscle, congenital muscular dystrophy, muscular dystrophy
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Elevated Plus Maze for Mice
Authors: Munekazu Komada, Keizo Takao, Tsuyoshi Miyakawa.
Institutions: Graduate School of Medicine, Kyoto University, Fujita Health University.
Although the mouse genome is now completely sequenced, the functions of most of the genes expressed in the brain are not known. The influence of a given gene on a specific behavior can be determined by behavioral analysis of mutant mice. If a target gene is expressed in the brain, behavioral phenotype of the mutant mice could elucidate the genetic mechanism of normal behaviors. The elevated plus maze test is one of the most widely used tests for measuring anxiety-like behavior. The test is based on the natural aversion of mice for open and elevated areas, as well as on their natural spontaneous exploratory behavior in novel environments. The apparatus consists of open arms and closed arms, crossed in the middle perpendicularly to each other, and a center area. Mice are given access to all of the arms and are allowed to move freely between them. The number of entries into the open arms and the time spent in the open arms are used as indices of open space-induced anxiety in mice. Unfortunately, the procedural differences that exist between laboratories make it difficult to duplicate and compare results among laboratories. Here, we present a detailed movie demonstrating our protocol for the elevated plus maze test. In our laboratory, we have assessed more than 90 strains of mutant mice using the protocol shown in the movie. These data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will promote better understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used in different laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.
Neuroscience, Issue 22, Knockout mice, genetically engineered mice, behavioral test, phenotyping
Play Button
Inchworming: A Novel Motor Stereotypy in the BTBR T+ Itpr3tf/J Mouse Model of Autism
Authors: Jacklyn D. Smith, Jong M. Rho, Susan A. Masino, Richelle Mychasiuk.
Institutions: University of Calgary Faculty of Medicine, Trinity College.
Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental disorder characterized by decreased reciprocal social interaction, abnormal communication, and repetitive behaviors with restricted interest. As diagnosis is based on clinical criteria, any potentially relevant rodent models of this heterogeneous disorder should ideally recapitulate these diverse behavioral traits. The BTBR T+ Itpr3tf/J (BTBR) mouse is an established animal model of ASD, displaying repetitive behaviors such as increased grooming, as well as cognitive inflexibility. With respect to social interaction and interest, the juvenile play test has been employed in multiple rodent models of ASD. Here, we show that when BTBR mice are tested in a juvenile social interaction enclosure containing sawdust bedding, they display a repetitive synchronous digging motion. This repetitive motor behavior, referred to as "inchworming," was named because of the stereotypic nature of the movements exhibited by the mice while moving horizontally across the floor. Inchworming mice must use their fore- and hind-limbs in synchrony to displace the bedding, performing a minimum of one inward and one outward motion. Although both BTBR and C56BL/6J (B6) mice exhibit this behavior, BTBR mice demonstrate a significantly higher duration and frequency of inchworming and a decreased latency to initiate inchworming when placed in a bedded enclosure. We conclude that this newly described behavior provides a measure of a repetitive motor stereotypy that can be easily measured in animal models of ASD.
Behavior, Issue 89, mice, inbred C57BL, social behavior, animal models, autism, BTBR, motor stereotypy, repetitive
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Measuring Attentional Biases for Threat in Children and Adults
Authors: Vanessa LoBue.
Institutions: Rutgers University.
Investigators have long been interested in the human propensity for the rapid detection of threatening stimuli. However, until recently, research in this domain has focused almost exclusively on adult participants, completely ignoring the topic of threat detection over the course of development. One of the biggest reasons for the lack of developmental work in this area is likely the absence of a reliable paradigm that can measure perceptual biases for threat in children. To address this issue, we recently designed a modified visual search paradigm similar to the standard adult paradigm that is appropriate for studying threat detection in preschool-aged participants. Here we describe this new procedure. In the general paradigm, we present participants with matrices of color photographs, and ask them to find and touch a target on the screen. Latency to touch the target is recorded. Using a touch-screen monitor makes the procedure simple and easy, allowing us to collect data in participants ranging from 3 years of age to adults. Thus far, the paradigm has consistently shown that both adults and children detect threatening stimuli (e.g., snakes, spiders, angry/fearful faces) more quickly than neutral stimuli (e.g., flowers, mushrooms, happy/neutral faces). Altogether, this procedure provides an important new tool for researchers interested in studying the development of attentional biases for threat.
Behavior, Issue 92, Detection, threat, attention, attentional bias, anxiety, visual search
Play Button
Light/dark Transition Test for Mice
Authors: Keizo Takao, Tsuyoshi Miyakawa.
Institutions: Graduate School of Medicine, Kyoto University.
Although all of the mouse genome sequences have been determined, we do not yet know the functions of most of these genes. Gene-targeting techniques, however, can be used to delete or manipulate a specific gene in mice. The influence of a given gene on a specific behavior can then be determined by conducting behavioral analyses of the mutant mice. As a test for behavioral phenotyping of mutant mice, the light/dark transition test is one of the most widely used tests to measure anxiety-like behavior in mice. The test is based on the natural aversion of mice to brightly illuminated areas and on their spontaneous exploratory behavior in novel environments. The test is sensitive to anxiolytic drug treatment. The apparatus consists of a dark chamber and a brightly illuminated chamber. Mice are allowed to move freely between the two chambers. The number of entries into the bright chamber and the duration of time spent there are indices of bright-space anxiety in mice. To obtain phenotyping results of a strain of mutant mice that can be readily reproduced and compared with those of other mutants, the behavioral test methods should be as identical as possible between laboratories. The procedural differences that exist between laboratories, however, make it difficult to replicate or compare the results among laboratories. Here, we present our protocol for the light/dark transition test as a movie so that the details of the protocol can be demonstrated. In our laboratory, we have assessed more than 60 strains of mutant mice using the protocol shown in the movie. Those data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will facilitate understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used across laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.
Neuroscience, Issue 1, knockout mice, transgenic mice, behavioral test, phenotyping
Play Button
Real-time fMRI Biofeedback Targeting the Orbitofrontal Cortex for Contamination Anxiety
Authors: Michelle Hampson, Teodora Stoica, John Saksa, Dustin Scheinost, Maolin Qiu, Jitendra Bhawnani, Christopher Pittenger, Xenophon Papademetris, Todd Constable.
Institutions: Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine .
We present a method for training subjects to control activity in a region of their orbitofrontal cortex associated with contamination anxiety using biofeedback of real-time functional magnetic resonance imaging (rt-fMRI) data. Increased activity of this region is seen in relationship with contamination anxiety both in control subjects1 and in individuals with obsessive-compulsive disorder (OCD),2 a relatively common and often debilitating psychiatric disorder involving contamination anxiety. Although many brain regions have been implicated in OCD, abnormality in the orbitofrontal cortex (OFC) is one of the most consistent findings.3, 4 Furthermore, hyperactivity in the OFC has been found to correlate with OCD symptom severity5 and decreases in hyperactivity in this region have been reported to correlate with decreased symptom severity.6 Therefore, the ability to control this brain area may translate into clinical improvements in obsessive-compulsive symptoms including contamination anxiety. Biofeedback of rt-fMRI data is a new technique in which the temporal pattern of activity in a specific region (or associated with a specific distributed pattern of brain activity) in a subject's brain is provided as a feedback signal to the subject. Recent reports indicate that people are able to develop control over the activity of specific brain areas when provided with rt-fMRI biofeedback.7-12 In particular, several studies using this technique to target brain areas involved in emotion processing have reported success in training subjects to control these regions.13-18 In several cases, rt-fMRI biofeedback training has been reported to induce cognitive, emotional, or clinical changes in subjects.8, 9, 13, 19 Here we illustrate this technique as applied to the treatment of contamination anxiety in healthy subjects. This biofeedback intervention will be a valuable basic research tool: it allows researchers to perturb brain function, measure the resulting changes in brain dynamics and relate those to changes in contamination anxiety or other behavioral measures. In addition, the establishment of this method serves as a first step towards the investigation of fMRI-based biofeedback as a therapeutic intervention for OCD. Given that approximately a quarter of patients with OCD receive little benefit from the currently available forms of treatment,20-22 and that those who do benefit rarely recover completely, new approaches for treating this population are urgently needed.
Medicine, Issue 59, Real-time fMRI, rt-fMRI, neurofeedback, biofeedback, orbitofrontal cortex, OFC, obsessive-compulsive disorder, OCD, contamination anxiety, resting connectivity
Play Button
The use of Biofeedback in Clinical Virtual Reality: The INTREPID Project
Authors: Claudia Repetto, Alessandra Gorini, Cinzia Vigna, Davide Algeri, Federica Pallavicini, Giuseppe Riva.
Institutions: Istituto Auxologico Italiano, Università Cattolica del Sacro Cuore.
Generalized anxiety disorder (GAD) is a psychiatric disorder characterized by a constant and unspecific anxiety that interferes with daily-life activities. Its high prevalence in general population and the severe limitations it causes, point out the necessity to find new efficient strategies to treat it. Together with the cognitive-behavioral treatments, relaxation represents a useful approach for the treatment of GAD, but it has the limitation that it is hard to be learned. The INTREPID project is aimed to implement a new instrument to treat anxiety-related disorders and to test its clinical efficacy in reducing anxiety-related symptoms. The innovation of this approach is the combination of virtual reality and biofeedback, so that the first one is directly modified by the output of the second one. In this way, the patient is made aware of his or her reactions through the modification of some features of the VR environment in real time. Using mental exercises the patient learns to control these physiological parameters and using the feedback provided by the virtual environment is able to gauge his or her success. The supplemental use of portable devices, such as PDA or smart-phones, allows the patient to perform at home, individually and autonomously, the same exercises experienced in therapist's office. The goal is to anchor the learned protocol in a real life context, so enhancing the patients' ability to deal with their symptoms. The expected result is a better and faster learning of relaxation techniques, and thus an increased effectiveness of the treatment if compared with traditional clinical protocols.
Neuroscience, Issue 33, virtual reality, biofeedback, generalized anxiety disorder, Intrepid, cybertherapy, cyberpsychology
Play Button
The Successive Alleys Test of Anxiety in Mice and Rats
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
The plus-maze was derived from the early work of Montgomery. He observed that rats tended to avoid the open arms of a maze, preferring the enclosed ones. Handley, Mithani and File et al. performed the first studies on the plus-maze design we use today, and in 1987 Lister published a design for use with mice. Time spent on, and entries into, the open arms are an index of anxiety; the lower these indices, the more anxious the mouse is. Alternatively, a mouse that spends most of its time in the closed arms is classed as anxious. One of the problems of the plus-maze is that, while time spent on, and entries into, the open arms is a fairly unambiguous measure of anxiety, time in the central area is more difficult to interpret, although time spent here has been classified as “decision making”. In many tests central area time is a considerable part of the total test time. Shepherd et al. produced an ingenious design to eliminate the central area, which they called the “zero maze”. However, although used by several groups, it has never been as widely adopted as the plus-maze. In the present article I describe a modification of the plus-maze design that not only eliminates the central area but also incorporates elements from other anxiety tests, such as the light-dark box and emergence tests. It is a linear series of four alleys, each having increasing anxiogenic properties. It has given similar results to the plus-maze in general. Although it may not be more sensitive than the plus-maze (more data is needed before a firm conclusion can be reached on this point), it provides a useful confirmation of plus-maze results which would be useful when, for example, only a single example of a mutant mouse was available, as, for example, in ENU-based mutagenesis programs.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, rats, anxiety-like behaviour, plus-maze, behaviour, prefrontal cortex, hippocampus, medial septum, successive alleys, animal model
Play Button
Making MR Imaging Child's Play - Pediatric Neuroimaging Protocol, Guidelines and Procedure
Authors: Nora M. Raschle, Michelle Lee, Roman Buechler, Joanna A. Christodoulou, Maria Chang, Monica Vakil, Patrice L. Stering, Nadine Gaab.
Institutions: Children’s Hospital Boston, University of Zurich, Harvard, Harvard Medical School.
Within the last decade there has been an increase in the use of structural and functional magnetic resonance imaging (fMRI) to investigate the neural basis of human perception, cognition and behavior 1, 2. Moreover, this non-invasive imaging method has grown into a tool for clinicians and researchers to explore typical and atypical brain development. Although advances in neuroimaging tools and techniques are apparent, (f)MRI in young pediatric populations remains relatively infrequent 2. Practical as well as technical challenges when imaging children present clinicians and research teams with a unique set of problems 3, 2. To name just a few, the child participants are challenged by a need for motivation, alertness and cooperation. Anxiety may be an additional factor to be addressed. Researchers or clinicians need to consider time constraints, movement restriction, scanner background noise and unfamiliarity with the MR scanner environment2,4-10. A progressive use of functional and structural neuroimaging in younger age groups, however, could further add to our understanding of brain development. As an example, several research groups are currently working towards early detection of developmental disorders, potentially even before children present associated behavioral characteristics e.g.11. Various strategies and techniques have been reported as a means to ensure comfort and cooperation of young children during neuroimaging sessions. Play therapy 12, behavioral approaches 13, 14,15, 16-18 and simulation 19, the use of mock scanner areas 20,21, basic relaxation 22 and a combination of these techniques 23 have all been shown to improve the participant's compliance and thus MRI data quality. Even more importantly, these strategies have proven to increase the comfort of families and children involved 12. One of the main advances of such techniques for the clinical practice is the possibility of avoiding sedation or general anesthesia (GA) as a way to manage children's compliance during MR imaging sessions 19,20. In the current video report, we present a pediatric neuroimaging protocol with guidelines and procedures that have proven to be successful to date in young children.
Neuroscience, Issue 29, fMRI, imaging, development, children, pediatric neuroimaging, cognitive development, magnetic resonance imaging, pediatric imaging protocol, patient preparation, mock scanner
Play Button
Hyponeophagia: A Measure of Anxiety in the Mouse
Authors: Rob M.J. Deacon.
Institutions: University of Oxford.
Before the present day, when fast-acting and potent rodenticides such as alpha-chloralose were not yet in use, the work of pest controllers was often hampered by a phenomenon known as "bait shyness". Mice and rats cannot vomit, due to the tightness of the cardiac sphincter of the stomach, so to overcome the problem of potential food toxicity they have evolved a strategy of first ingesting only very small amounts of novel substances. The amounts ingested then gradually increase until the animal has determined whether the substance is safe and nutritious. So the old rat-catchers would first put a palatable substance such as oatmeal, which was to be the vehicle for the toxin, in the infested area. Only when large amounts were being readily consumed would they then add the poison, in amounts calculated not to affect the taste of the vehicle. The poisoned bait, which the animals were now readily eating in large amounts, would then swiftly perform its function. Bait shyness is now used in the behavioural laboratory as a way of measuring anxiety. A highly palatable but novel substance, such as sweet corn, nuts or sweetened condensed milk, is offered to the mice (or rats) in a novel situation, such as a new cage. The latency to consume a defined amount of the new food is then measured. Robert M.J. Deacon can be reach at
Neuroscience, Issue 51, Anxiety, hyponeophagia, bait shyness, mice, hippocampus, strain differences, plus-maze
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.