JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Potential influences of climate and nest structure on spotted owl reproductive success: a biophysical approach.
Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (h(c)) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of h(c) in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (~36 °C) to physiological zero temperature (PZT; ~26 °C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season.
Authors: Brianna N. Gaskill, Alicia Z. Karas, Joseph P. Garner, Kathleen R. Pritchett-Corning.
Published: 12-24-2013
The minimization and alleviation of suffering has moral and scientific implications. In order to mitigate this negative experience one must be able to identify when an animal is actually in distress. Pain, illness, or distress cannot be managed if unrecognized. Evaluation of pain or illness typically involves the measurement of physiologic and behavioral indicators which are either invasive or not suitable for large scale assessment. The observation of nesting behavior shows promise as the basis of a species appropriate cage-side assessment tool for recognizing distress in mice. Here we demonstrate the utility of nest building behavior in laboratory mice as an ethologically relevant indicator of welfare. The methods presented can be successfully used to identify thermal stressors, aggressive cages, sickness, and pain. Observation of nest building behavior in mouse colonies provides a refinement to health and well-being assessment on a day to day basis.
21 Related JoVE Articles!
Play Button
Obtaining Specimens with Slowed, Accelerated and Reversed Aging in the Honey Bee Model
Authors: Daniel Münch, Nicholas Baker, Erik M.K. Rasmussen, Ashish K. Shah, Claus D. Kreibich, Lars E. Heidem, Gro V. Amdam.
Institutions: Norwegian University of Life Sciences, Arizona State University.
Societies of highly social animals feature vast lifespan differences between closely related individuals. Among social insects, the honey bee is the best established model to study how plasticity in lifespan and aging is explained by social factors. The worker caste of honey bees includes nurse bees, which tend the brood, and forager bees, which collect nectar and pollen. Previous work has shown that brain functions and flight performance senesce more rapidly in foragers than in nurses. However, brain functions can recover, when foragers revert back to nursing tasks. Such patterns of accelerated and reversed functional senescence are linked to changed metabolic resource levels, to alterations in protein abundance and to immune function. Vitellogenin, a yolk protein with adapted functions in hormonal control and cellular defense, may serve as a major regulatory element in a network that controls the different aging dynamics in workers. Here we describe how the emergence of nurses and foragers can be monitored, and manipulated, including the reversal from typically short-lived foragers into longer-lived nurses. Our representative results show how individuals with similar chronological age differentiate into foragers and nurse bees under experimental conditions. We exemplify how behavioral reversal from foragers back to nurses can be validated. Last, we show how different cellular senescence can be assessed by measuring the accumulation of lipofuscin, a universal biomarker of senescence. For studying mechanisms that may link social influences and aging plasticity, this protocol provides a standardized tool set to acquire relevant sample material, and to improve data comparability among future studies.
Developmental Biology, Issue 78, Insects, Microscopy, Confocal, Aging, Gerontology, Neurobiology, Insect, Invertebrate, Brain, Lipofuscin, Confocal Microscopy
Play Button
Fabrication and Operation of an Oxygen Insert for Adherent Cellular Cultures
Authors: Shawn Oppegard, Elly Sinkala, David Eddington.
Institutions: University of Illinois.
Oxygen is a key modulator of many cellular pathways, but current devices permitting in vitro oxygen modulation fail to meet the needs of biomedical research. The hypoxic chamber offers a simple system to control oxygenation in standard culture vessels, but lacks precise temporal and spatial control over the oxygen concentration at the cell surface, preventing its application in studying a variety of physiological phenomena. Other systems have improved upon the hypoxic chamber, but require specialized knowledge and equipment for their operation, making them intimidating for the average researcher. A microfabricated insert for multiwell plates has been developed to more effectively control the temporal and spatial oxygen concentration to better model physiological phenomena found in vivo. The platform consists of a polydimethylsiloxane insert that nests into a standard multiwell plate and serves as a passive microfluidic gas network with a gas-permeable membrane aimed to modulate oxygen delivery to adherent cells. The device is simple to use and is connected to gas cylinders that provide the pressure to introduce the desired oxygen concentration into the platform. Fabrication involves a combination of standard SU-8 photolithography, replica molding, and defined PDMS spinning on a silicon wafer. The components of the device are bonded after surface treatment using a hand-held plasma system. Validation is accomplished with a planar fluorescent oxygen sensor. Equilibration time is on the order of minutes and a wide variety of oxygen profiles can be attained based on the device design, such as the cyclic profile achieved in this study, and even oxygen gradients to mimic those found in vivo. The device can be sterilized for cell culture using common methods without loss of function. The device's applicability to studying the in vitro wound healing response will be demonstrated.
Cellular Biology, Issue 35, hypoxia, cell, culture, control, wound, healing, oxygen, microfluidic device, bioengineering
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
A Semi-quantitative Approach to Assess Biofilm Formation Using Wrinkled Colony Development
Authors: Valerie A. Ray, Andrew R. Morris, Karen L. Visick.
Institutions: Loyola University Medical Center.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses 1. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities 2. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media 3. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis 4, and Gram-negative bacteria, such as Vibrio cholerae 5, Vibrio parahaemolyticus 6, Pseudomonas aeruginosa 7, and Vibrio fischeri 8. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes 8-10. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect 9,11, while strains exhibiting increased biofilm phenotypes are enhanced for colonization 8,12. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.
Microbiology, Issue 64, Immunology, Biofilm, wrinkled colony, rugose, Vibrio fischeri, Zeiss stemi, dissecting microscope, marine biology
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
Effect of Male Accessory Gland Products on Egg Laying in Gastropod Molluscs
Authors: Sander van Iersel, Elferra M. Swart, Yumi Nakadera, Nico M. van Straalen, Joris M. Koene.
Institutions: VU University.
In internally fertilizing animals, seminal fluid is usually added to the spermatozoa, together forming the semen or ejaculate. Besides nourishing and activating sperm, the components in the seminal fluid can also influence female physiology to augment fertilization success of the sperm donor. While many studies have reported such effects in species with separate sexes, few studies have addressed this in simultaneously hermaphroditic animals. This video protocol presents a method to study effects of seminal fluid in gastropods, using a simultaneously hermaphroditic freshwater snail, the great pond snail Lymnaea stagnalis, as model organism. While the procedure is shown using complete prostate gland extracts, individual components (i.e., proteins, peptides, and other compounds) of the seminal fluid can be tested in the same way. Effects of the receipt of ejaculate components on egg laying can be quantified in terms of frequency of egg laying and more subtle estimates of female reproductive performance such as egg numbers within each egg masses. Results show that seminal fluid proteins affect female reproductive output in this simultaneous hermaphrodite, highlighting their importance for sexual selection.
Physiology, Issue 88, Allohormone, Fresh-water snail, Gastropod, Lymnaea stagnalis, Mollusc, Pond snail, Prostate, Semen, Seminal fluid Sexual selection, Sperm
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)
Authors: Ying Wang, Nicholas Baker, Gro V. Amdam.
Institutions: Arizona State University , Norwegian University of Life Sciences.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.
Neuroscience, Issue 77, Genetics, Behavior, Neurobiology, Molecular Biology, Chemistry, Biochemistry, biology (general), genetics (animal and plant), animal biology, RNA interference, RNAi, double stranded RNA, dsRNA, double gene knockdown, vitellogenin gene, vg, ultraspiracle gene, usp, vitellogenin protein, Vg, ultraspiracle protein, USP, green fluorescence protein, GFP, gustatory perception, proboscis extension response, PER, honey bees, Apis mellifera, animal model, assay
Play Button
Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development
Authors: Jessica R. Murray, Monika E. Stanciauskas, Tejas S. Aralere, Margaret S. Saha.
Institutions: College of William and Mary.
The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access.
Developmental Biology, Issue 88, zebra finch (Taeniopygiaguttata), dissection, embryo, development, in situ hybridization, 5-ethynyl-2’-deoxyuridine (EdU)
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
Play Button
Who is Who? Non-invasive Methods to Individually Sex and Mark Altricial Chicks
Authors: Iris Adam, Constance Scharff, Mariam Honarmand.
Institutions: Freie Universität Berlin.
Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines.
Developmental Biology, Issue 87, songbird, molecular sexing, PCR, individual marking, down feather, DNA extraction, sample storage, zebra finch, buccal swabs, saliva, gender
Play Button
Marble Burying and Nestlet Shredding as Tests of Repetitive, Compulsive-like Behaviors in Mice
Authors: Mariana Angoa-Pérez, Michael J. Kane, Denise I. Briggs, Dina M. Francescutti, Donald M. Kuhn.
Institutions: Wayne State University School of Medicine.
Obsessive-compulsive disorder (OCD) and autism spectrum disorders (ASD) are serious and debilitating psychiatric conditions and each constitutes a significant public health concern, particularly in children. Both of these conditions are highlighted by the repeated expression of meaningless behaviors. Individuals with OCD often show checking, frequent hand washing, and counting. Children with ASDs also engage in repetitive tapping, arm or hand flapping, and rocking. These behaviors can vary widely in intensity and frequency of expression. More intense forms of repetitive behaviors can even result in injury (e.g. excessive grooming, hand washing, and self-stimulation). These behaviors are therefore very disruptive and make normal social discourse difficult. Treatment options for repetitive behaviors in OCD and ASDs are somewhat limited and there is great interest in developing more effective therapies for each condition. Numerous animal models for evaluating compulsive-like behaviors have been developed over the past three decades. Perhaps the animal models with the greatest validity and ease of use are the marble burying test and the nestlet shredding test. Both tests take advantage of the fact that the target behaviors occur spontaneously in mice. In the marble burying test, 20 marbles are arrayed on the surface of clean bedding. The number of marbles buried in a 30 min session is scored by investigators blind to the treatment or status of the subjects. In the nestlet shredding test, a nestlet comprised of pulped cotton fiber is preweighed and placed on top of cage bedding and the amount of the nestlet remaining intact after a 30 min test session is determined. Presently, we describe protocols for and show movie documentation of marble burying and nestlet shredding. Both tests are easily and accurately scored and each is sensitive to small changes in the expression of compulsive-like behaviors that result from genetic manipulations, disease, or head injury.
Behavior, Issue 82, compulsive-like behaviors, obsessive-compulsive disorder (OCD), autism spectrum disorders (ASD), marble burying, nestlet shredding, TPH2 KO mice
Play Button
Laboratory-determined Phosphorus Flux from Lake Sediments as a Measure of Internal Phosphorus Loading
Authors: Mary E. Ogdahl, Alan D. Steinman, Maggie E. Weinert.
Institutions: Grand Valley State University.
Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration. Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release. The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.
Environmental Sciences, Issue 85, Limnology, internal loading, eutrophication, nutrient flux, sediment coring, phosphorus, lakes
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Assessing Burrowing, Nest Construction, and Hoarding in Mice
Authors: Robert Deacon.
Institutions: University of Oxford .
Deterioration in the ability to perform "Activities of daily living" (ADL) is an early sign of Alzheimer's disease (AD). Preclinical behavioural screening of possible treatments for AD currently largely focuses on cognitive testing, which frequently demands expensive equipment and lots of experimenter time. However, human episodic memory (the most severely affected aspect of memory in AD) is different to rodent memory, which seems to be largely non-episodic. Therefore the present ways of screening for new AD treatments for AD in rodents are intrinsically unlikely to succeed. A new approach to preclinical screening would be to characterise the ADL of mice. Fortuitously, several such assays have recently been developed at Oxford, and here the three most sensitive and well-characterised are presented. Burrowing was first developed in Oxford13. It evolved from a need to develop a mouse hoarding paradigm. Most published rodent hoarding paradigms required a distant food source to be linked to the home cage by a connecting passage. This would involve modifying the home cage as well as making a mouse-proof connecting passage and food source. So it was considered whether it would be possible to put the food source inside the cage. It was found that if a container was placed on the floor it was emptied by the next morning., The food pellets were, however, simply deposited in a heap at the container entrance, rather than placed in a discrete place away from the container, as might be expected if the mice were truly hoarding them. Close inspection showed that the mice were performing digging ("burrowing") movements, not carrying the pellets in their mouths to a selected place as they would if truly hoarding them.6 Food pellets are not an essential substrate for burrowing; mice will empty tubes filled with sand, gravel, even soiled bedding from their own cage. Moreover, they will empty a full tube even if an empty one is placed next to it8. Several nesting protocols exist in the literature. The present Oxford one simplifies the procedure and has a well-defined scoring system for nest quality5. A hoarding paradigm was later developed in which the mice, rather than hoarding back to the real home cage, were adapted to living in the "home base" of a hoarding apparatus. This home base was connected to a tube made of wire mesh, the distal end of which contained the food source. This arrangement proved to yield good hoarding behaviour, as long as the mice were adapted to living in the "home base" during the day and only allowed to enter the hoarding tube at night.
Neuroscience, Issue 59, Mice, murine, burrowing, nesting, hoarding, hippocampus, Alzheimer’s, prion, species-typical, welfare, 3Rs
Play Button
Windowing Chicken Eggs for Developmental Studies
Authors: Matthew J. Korn, Karina S. Cramer.
Institutions: University of California, Irvine (UCI).
The study of development has been greatly aided by the use of the chick embryo as an experimental model. The ease of accessibility of the embryo has allowed for experiments to map cell fates using several approaches, including chick quail chimeras and focal dye labeling. In addition, it allows for molecular perturbations of several types, including placement of protein-coated beads and introduction of plasmid DNA using in ovo electroporation. These experiments have yielded important data on the development of the central and peripheral nervous systems. For many of these studies, it is necessary to open the eggshell and reclose it without perturbing the embryo's growth. The embryo can be examined at successive developmental stages by re-opening the eggshell. While there are several excellent methods for opening chicken eggs, in this article we demonstrate one method that has been optimized for long survival times. In this method, the egg rests on its side and a small window is cut in the shell. After the experimental procedure, the shell is used to cover the egg for the duration of its development. Clear plastic tape overlying the eggshell protects the embryo and helps retain hydration during the remainder of the incubation period. This method has been used beginning at two days of incubation and has allowed survival through mature embryonic ages.
Developmental Biology, Issue 8, Neuroscience, Chicken, Embryos, Electroporation, In ovo
Play Button
Drosophila Pupal Abdomen Immunohistochemistry
Authors: Wei Wang, John H. Yoder.
Institutions: University of Alabama.
The Drosophila pupal abdomen is an established model system for the study of epithelial morphogenesis and the development of sexually dimorphic morphologies 1-3. During pupation, which spans approximately 96 hours (at 25 °C), proliferating populations of imaginal cells replace the larval epidermis to generate the adult abdominal segments. These imaginal cells, born during embryogenesis, exist as lateral pairs of histoblast nests in each abdominal segment of the larvae. Four pairs of histoblast nests give rise to the adult dorsal cuticle (anterior and posterior dorsal nests), the ventral cuticle (ventral nests) and the spiracles associated with each segment (spiracle nests) 4. Upon puparation, these diploid cells (distinguishable by size from the larger polyploid larval epidermal cells- LECs) begin a stereotypical process of proliferation, migration and replacement of the LECs. Various molecular and genetic tools can be employed to investigate the contributions of genetic pathways involved in morphogenesis of the adult abdomen. Ultimate adult phenotypes are typically analyzed following dissection of adult abdominal cuticles. However, investigation of the underlying molecular processes requires immunohistochemical analyses of the pupal epithelium, which present unique challenges. Temporally dynamic morphogenesis and the interactions of two distinct epithelial populations (larval and imaginal) generate a fragile tissue prone to excessive cell loss during dissection and subsequent processing. We have developed methods of dissection, fixation, mounting and imaging of the Drosophila pupal abdominem epithelium for immunohistochemical studies that generate consistent high quality samples suitable for confocal or standard fluorescent microscopy.
Immunology, Issue 56, Drosophila, immunohistochemistry, pupae, abdomen, epithelium, antibody
Play Button
Obtaining Eggs from Xenopus laevis Females
Authors: Marie K. Cross, Maureen Powers.
Institutions: Emory University.
The eggs of Xenopus laevis intact, lysed, and/or fractionated are useful for a wide variety of experiments. This protocol shows how to induce egg laying, collect and dejelly the eggs, and sort the eggs to remove any damaged eggs.
Basic Protocols, Issue 18, Current Protocols Wiley, Eggs, Xenopus laevis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.