JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Stochastic model of in-vivo X4 emergence during HIV infection: implications for the CCR5 inhibitor maraviroc.
The emergence of X4 tropic viral strains throughout the course of HIV infection is associated with poorer prognostic outcomes and faster progressions to AIDS than for patients in whom R5 viral strains predominate. Here we investigate a stochastic model to account for the emergence of X4 virus via mutational intermediates of lower fitness that exhibit dual/mixed (D/M) tropism, and employ the model to investigate whether the administration of CCR5 blockers in-vivo is likely to promote a shift towards X4 tropism. We show that the proposed stochastic model can account for X4 emergence with a median time of approximately 4 years post-infection as a result of: 1.) random stochastic mutations in the V3 region of env during the reverse transcription step of infection; 2.) increasing numbers of CXCR4-expressing activated naive CD4+ T cells with declining total CD4+ T cell counts, thereby providing increased numbers of activated target cells for productive infection by X4 virus. Our model indicates that administration of the CCR5 blocker maraviroc does not promote a shift towards X4 tropism, assuming sufficient efficacy of background therapy (BT). However our modelling also indicates that administration of maraviroc as a monotherapy or with BT of suboptimal efficacy can promote emergence of X4 tropic virus, resulting in accelerated progression to AIDS. Taken together, our results demonstrate that maraviroc is safe and effective if co-administered with sufficiently potent BT, but that suboptimal BT may promote X4 emergence and accelerated progression to AIDS. These results underscore the clinical importance for careful selection of BT when CCR5 blockers are administered in-vivo.
Authors: Saleta Sierra, Rolf Kaiser, Nadine Lübke, Alexander Thielen, Eugen Schuelter, Eva Heger, Martin Däumer, Stefan Reuter, Stefan Esser, Gerd Fätkenheuer, Herbert Pfister, Mark Oette, Thomas Lengauer.
Published: 12-01-2011
Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 20111. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3)2. This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL<1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in this video: 1. Collection of a blood sample 2. Isolation of the HIV RNA from the plasma and/or HIV proviral DNA from blood mononuclear cells 3. Amplification of the env region 4. Amplification of the V3 region 5. Sequence reaction of the V3 amplicon 6. Purification of the sequencing samples 7. Sequencing the purified samples 8. Sequence editing 9. Sequencing data interpretation and tropism prediction
18 Related JoVE Articles!
Play Button
Genotypic Inference of HIV-1 Tropism Using Population-based Sequencing of V3
Authors: Rachel A. McGovern, P. Richard Harrigan, Luke C. Swenson.
Institutions: BC Centre for Excellence in HIV/AIDS.
Background: Prior to receiving a drug from CCR5-antagonist class in HIV therapy, a patient must undergo an HIV tropism test to confirm that his or her viral population uses the CCR5 coreceptor for cellular entry, and not an alternative coreceptor. One approach to tropism testing is to examine the sequence of the V3 region of the HIV envelope, which interacts with the coreceptor. Methods: Viral RNA is extracted from blood plasma. The V3 region is amplified in triplicate with nested reverse transcriptase-PCR. The amplifications are then sequenced and analyzed using the software, RE_Call. Sequences are then submitted to a bioinformatic algorithm such as geno2pheno to infer viral tropism from the V3 region. Sequences are inferred to be non-R5 if their geno2pheno false positive rate falls below 5.75%. If any one of the three sequences from a sample is inferred to be non-R5, the patient is unlikely to respond to a CCR5-antagonist.
Immunology, Issue 46, HIV, tropism, coreceptor, V3, genotyping, sequencing, CCR5, CXCR4, maraviroc
Play Button
Imaging of HIV-1 Envelope-induced Virological Synapse and Signaling on Synthetic Lipid Bilayers
Authors: Kathleen C. Prins, Gaia Vasiliver-Shamis, Michael Cammer, David Depoil, Michael L. Dustin, Catarina E. Hioe.
Institutions: New York University Langone School of Medicine, Marty and Helen Kimmel Center for Biology and Medicine and Skirball Institute for Biomolecular Medicine, National Institutes of Health, Veteran Affairs New York Harbor Healthcare System.
Human immunodeficiency virus type 1 (HIV-1) infection occurs most efficiently via cell to cell transmission2,10,11. This cell to cell transfer between CD4+ T cells involves the formation of a virological synapse (VS), which is an F-actin-dependent cell-cell junction formed upon the engagement of HIV-1 envelope gp120 on the infected cell with CD4 and the chemokine receptor (CKR) CCR5 or CXCR4 on the target cell 8. In addition to gp120 and its receptors, other membrane proteins, particularly the adhesion molecule LFA-1 and its ligands, the ICAM family, play a major role in VS formation and virus transmission as they are present on the surface of virus-infected donor cells and target cells, as well as on the envelope of HIV-1 virions1,4,5,6,7,13. VS formation is also accompanied by intracellular signaling events that are transduced as a result of gp120-engagement of its receptors. Indeed, we have recently showed that CD4+ T cell interaction with gp120 induces recruitment and phosphorylation of signaling molecules associated with the TCR signalosome including Lck, CD3ζ, ZAP70, LAT, SLP-76, Itk, and PLCγ15. In this article, we present a method to visualize supramolecular arrangement and membrane-proximal signaling events taking place during VS formation. We take advantage of the glass-supported planar bi-layer system as a reductionist model to represent the surface of HIV-infected cells bearing the viral envelope gp120 and the cellular adhesion molecule ICAM-1. The protocol describes general procedures for monitoring HIV-1 gp120-induced VS assembly and signal activation events that include i) bi-layer preparation and assembly in a flow cell, ii) injection of cells and immunofluorescence staining to detect intracellular signaling molecules on cells interacting with HIV-1 gp120 and ICAM-1 on bi-layers, iii) image acquisition by TIRF microscopy, and iv) data analysis. This system generates high-resolution images of VS interface beyond that achieved with the conventional cell-cell system as it allows detection of distinct clusters of individual molecular components of VS along with specific signaling molecules recruited to these sub-domains.
Immunology, Issue 61, TIRF microscopy, planar bilayer, HIV envelope, virological synapse
Play Button
Rapid Screening of HIV Reverse Transcriptase and Integrase Inhibitors
Authors: Steven J. Smith, Stephen H. Hughes.
Institutions: National Cancer Institute.
Although a number of anti HIV drugs have been approved, there are still problems with toxicity and drug resistance. This demonstrates a need to identify new compounds that can inhibit infection by the common drug resistant HIV-1 strains with minimal toxicity. Here we describe an efficient assay that can be used to rapidly determine the cellular cytotoxicity and efficacy of a compound against WT and mutant viral strains. The desired target cell line is seeded in a 96-well plate and, after a 24 hr incubation, serially dilutions of the compounds to be tested are added. No further manipulations are necessary for cellular cytotoxicity assays; for anti HIV assays a predetermined amount of either a WT or drug resistant HIV-1 vector that expresses luciferase is added to the cells. Cytotoxicity is measured by using an ATP dependent luminescence assay and the impact of the compounds on infectivity is measured by determining the amount of luciferase in the presence or the absence of the putative inhibitors. This screening assay takes 4 days to complete and multiple compounds can be screened in parallel. Compounds are screened in triplicate and the data are normalized to the infectivity/ATP levels in absence of target compounds. This technique provides a quick and accurate measurement of the efficacy and toxicity of potential anti HIV compounds.
Immunology, Issue 86, HIV, cytotoxicity, infectivity, luciferase, drug resistance, integrase, reverse transcriptase
Play Button
Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding
Authors: David Almond, Timothy Cardozo.
Institutions: School of Medicine, New York University.
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Infection, Issue 43, HIV-1, structure-activity relationships, ab initio simulations, antibody-mediated neutralization, vaccine design
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Conformational Evaluation of HIV-1 Trimeric Envelope Glycoproteins Using a Cell-based ELISA Assay
Authors: Maxime Veillette, Mathieu Coutu, Jonathan Richard, Laurie-Anne Batraville, Anik Désormeaux, Michel Roger, Andrés Finzi.
Institutions: Université de Montréal.
HIV-1 envelope glycoproteins (Env) mediate viral entry into target cells and are essential to the infectious cycle. Understanding how those glycoproteins are able to fuel the fusion process through their conformational changes could lead to the design of better, more effective immunogens for vaccine strategies. Here we describe a cell-based ELISA assay that allows studying the recognition of trimeric HIV-1 Env by monoclonal antibodies. Following expression of HIV-1 trimeric Env at the surface of transfected cells, conformation specific anti-Env antibodies are incubated with the cells. A horseradish peroxidase-conjugated secondary antibody and a simple chemiluminescence reaction are then used to detect bound antibodies. This system is highly flexible and can detect Env conformational changes induced by soluble CD4 or cellular proteins. It requires minimal amount of material and no highly-specialized equipment or know-how. Thus, this technique can be established for medium to high throughput screening of antigens and antibodies, such as newly-isolated antibodies.
Infectious Diseases, Issue 91, HIV-1, envelope glycoproteins, gp120, gp41, neutralizing antibodies, non-neutralizing antibodies, CD4, cell-based ELISA
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
Play Button
An In vitro Co-infection Model to Study Plasmodium falciparum-HIV-1 Interactions in Human Primary Monocyte-derived Immune Cells
Authors: Guadalupe Andreani, Dominic Gagnon, Robert Lodge, Michel J. Tremblay, Dave Richard.
Institutions: CHUL (CHUQ), Quebec City, Quebec, Canada.
Plasmodium falciparum, the causative agent of the deadliest form of malaria, and human immunodeficiency virus type-1 (HIV-1) are among the most important health problems worldwide, being responsible for a total of 4 million deaths annually1. Due to their extensive overlap in developing regions, especially Sub-Saharan Africa, co-infections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood. Epidemiological reports have suggested that malarial infection transiently enhances HIV-1 replication and increases HIV-1 viral load in co-infected individuals2,3. Because this viremia stays high for several weeks after treatment with antimalarials, this phenomenon could have an impact on disease progression and transmission. The cellular immunological mechanisms behind these observations have been studied only scarcely. The few in vitro studies investigating the impact of malaria on HIV-1 have demonstrated that exposure to soluble malarial antigens can increase HIV-1 infection and reactivation in immune cells. However, these studies used whole cell extracts of P. falciparum schizont stage parasites and peripheral blood mononuclear cells (PBMC), making it hard to decipher which malarial component(s) was responsible for the observed effects and what the target host cells were4,5. Recent work has demonstrated that exposure of immature monocyte-derived dendritic cells to the malarial pigment hemozoin increased their ability to transfer HIV-1 to CD4+ T cells6,7, but that it decreased HIV-1 infection of macrophages8. To shed light on this complex process, a systematic analysis of the interactions between the malaria parasite and HIV-1 in different relevant human primary cell populations is critically needed. Several techniques for investigating the impact of HIV-1 on the phagocytosis of micro-organisms and the effect of such pathogens on HIV-1 replication have been described. We here present a method to investigate the effects of P. falciparum-infected erythrocytes on the replication of HIV-1 in human primary monocyte-derived macrophages. The impact of parasite exposure on HIV-1 transcriptional/translational events is monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene while the effect on the quantity of virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants.
Immunology, Issue 66, Infection, Medicine, Malaria, HIV-1, Monocyte-Derived Macrophages, PBMC, Red blood cells, Dendritic Cells, Co-infections, Parasites, Plasmodium falciparum, AIDS
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.