JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Detection of bladder cancer using proteomic profiling of urine sediments.
PLoS ONE
We used protein expression profiles to develop a classification rule for the detection and prognostic assessment of bladder cancer in voided urine samples. Using the Ciphergen PBS II ProteinChip Reader, we analyzed the protein profiles of 18 pairs of samples of bladder tumor and adjacent urothelium tissue, a training set of 85 voided urine samples (32 controls and 53 bladder cancer), and a blinded testing set of 68 voided urine samples (33 controls and 35 bladder cancer). Using t-tests, we identified 473 peaks showing significant differential expression across different categories of paired bladder tumor and adjacent urothelial samples compared to normal urothelium. Then the intensities of those 473 peaks were examined in a training set of voided urine samples. Using this approach, we identified 41 protein peaks that were differentially expressed in both sets of samples. The expression pattern of the 41 protein peaks was used to classify the voided urine samples as malignant or benign. This approach yielded a sensitivity and specificity of 59% and 90%, respectively, on the training set and 80% and 100%, respectively, on the testing set. The proteomic classification rule performed with similar accuracy in low- and high-grade bladder carcinomas. In addition, we used hierarchical clustering with all 473 protein peaks on 65 benign voided urine samples, 88 samples from patients with clinically evident bladder cancer, and 127 samples from patients with a history of bladder cancer to classify the samples into Cluster A or B. The tumors in Cluster B were characterized by clinically aggressive behavior with significantly shorter metastasis-free and disease-specific survival.
Authors: Laura Kasman, Christina Voelkel-Johnson.
Published: 12-01-2013
ABSTRACT
Bladder cancer is the second most common cancer of the urogenital tract and novel therapeutic approaches that can reduce recurrence and progression are needed. The tumor microenvironment can significantly influence tumor development and therapy response. It is therefore often desirable to grow tumor cells in the organ from which they originated. This protocol describes an orthotopic model of bladder cancer, in which MB49 murine bladder carcinoma cells are instilled into the bladder via catheterization. Successful tumor cell implantation in this model requires disruption of the protective glycosaminoglycan layer, which can be accomplished by physical or chemical means. In our protocol the bladder is treated with trypsin prior to cell instillation. Catheterization of the bladder can also be used to deliver therapeutics once the tumors are established. This protocol describes the delivery of an adenoviral construct that expresses a luciferase reporter gene. While our protocol has been optimized for short-term studies and focuses on gene delivery, the methodology of mouse bladder catheterization has broad applications.
20 Related JoVE Articles!
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
An Orthotopic Bladder Tumor Model and the Evaluation of Intravesical saRNA Treatment
Authors: Moo Rim Kang, Glen Yang, Klaus Charisse, Hila Epstein-Barash, Muthiah Manoharan, Long-Cheng Li.
Institutions: University of California, San Francisco , Alnylam Pharmaceuticals, Inc..
We present a novel method for treating bladder cancer with intravesically delivered small activating RNA (saRNA) in an orthotopic xenograft mouse bladder tumor model. The mouse model is established by urethral catheterization under inhaled general anesthetic. Chemical burn is then introduced to the bladder mucosa using intravesical silver nitrate solution to disrupt the bladder glycosaminoglycan layer and allows cells to attach. Following several washes with sterile water, human bladder cancer KU-7-luc2-GFP cells are instilled through the catheter into the bladder to dwell for 2 hours. Subsequent growth of bladder tumors is confirmed and monitored by in vivo bladder ultrasound and bioluminescent imaging. The tumors are then treated intravesically with saRNA formulated in lipid nanoparticles (LNPs). Tumor growth is monitored with ultrasound and bioluminescence. All steps of this procedure are demonstrated in the accompanying video.
Cancer Biology, Issue 65, Medicine, Physiology, bladder tumor, orthotopic, bioluminescent, ultrasound, small RNA
4207
Play Button
Mouse Bladder Wall Injection
Authors: Chi-Ling Fu, Charity A. Apelo, Baldemar Torres, Kim H. Thai, Michael H. Hsieh.
Institutions: Stanford University School of Medicine.
Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.
Medicine, Issue 53, stem cell, bladder cancer, intramural injection, bladder wall injection, bladder
2523
Play Button
Transurethral Induction of Mouse Urinary Tract Infection
Authors: Kim H. Thai, Anuradha Thathireddy, Michael H. Hsieh.
Institutions: Stanford University , Stanford University School of Medicine.
Uropathogenic bacterial strains of interest are grown on agar. Generally, uropathogenic E. coli (UPEC) and other strains can be grown overnight on Luria-Bertani (LB) agar at 37°C in ambient air. UPEC strains grow as yellowish-white translucent colonies on LB agar. Following confirmation of appropriate colony morphology, single colonies are then picked to be cultured in broth. LB broth can be used for most uropathogenic bacterial strains. Two serial, overnight LB broth cultures can be employed to enhance expression of type I pili, a well-defined virulence factor for uropathogenic bacteria. Broth cultures are diluted to the desired concentration in phosphate buffered saline (PBS). Eight to 12 week old female mice are placed under isoflurane anesthesia and transurethrally inoculated with bacteria using polyethylene tubing-covered 30 gauge syringes. Typical inocula, which must be empirically determined for each bacterial/mouse strain combination, are 106 to 108 cfu per mouse in 10 to 50 microliters of PBS. After the desired infection period (one day to several weeks), urine samples and the bladder and both kidneys are harvested. Each organ is minced, placed in PBS, and homogenized in a Blue Bullet homogenizer. Urine and tissue homogenates are serially diluted in PBS and cultured on appropriate agar. The following day, colony forming units are counted.
Microbiology, Issue 42, UTI, urinary tract infection, urethra, mice, bacterial, cystitis, pyelonephritis, mouse, bacteria, urethral
2070
Play Button
The Use of Cystometry in Small Rodents: A Study of Bladder Chemosensation
Authors: Pieter Uvin, Wouter Everaerts, Silvia Pinto, Yeranddy A. Alpízar, Mathieu Boudes, Thomas Gevaert, Thomas Voets, Bernd Nilius, Karel Talavera, Dirk De Ridder.
Institutions: KU Leuven, Belgium, KU Leuven, Belgium, KU Leuven, Belgium.
The lower urinary tract (LUT) functions as a dynamic reservoir that is able to store urine and to efficiently expel it at a convenient time. While storing urine, however, the bladder is exposed for prolonged periods to waste products. By acting as a tight barrier, the epithelial lining of the LUT, the urothelium, avoids re-absorption of harmful substances. Moreover, noxious chemicals stimulate the bladder's nociceptive innervation and initiate voiding contractions that expel the bladder's contents. Interestingly, the bladder's sensitivity to noxious chemicals has been used successfully in clinical practice, by intravesically infusing the TRPV1 agonist capsaicin to treat neurogenic bladder overactivity1. This underscores the advantage of viewing the bladder as a chemosensory organ and prompts for further clinical research. However, ethical issues severely limit the possibilities to perform, in human subjects, the invasive measurements that are necessary to unravel the molecular bases of LUT clinical pharmacology. A way to overcome this limitation is the use of several animal models2. Here we describe the implementation of cystometry in mice and rats, a technique that allows measuring the intravesical pressure in conditions of controlled bladder perfusion. After laparotomy, a catheter is implanted in the bladder dome and tunneled subcutaneously to the interscapular region. Then the bladder can be filled at a controlled rate, while the urethra is left free for micturition. During the repetitive cycles of filling and voiding, intravesical pressure can be measured via the implanted catheter. As such, the pressure changes can be quantified and analyzed. Moreover, simultaneous measurement of the voided volume allows distinguishing voiding contractions from non-voiding contractions3. Importantly, due to the differences in micturition control between rodents and humans, cystometric measurements in these animals have only limited translational value4. Nevertheless, they are quite instrumental in the study of bladder pathophysiology and pharmacology in experimental pre-clinical settings. Recent research using this technique has revealed the key role of novel molecular players in the mechano- and chemo-sensory properties of the bladder.
Medicine, Issue 66, Physiology, Chemistry, cystometry, urodynamics, bladder function, bladder chemosensation, animal model, urinary tract
3869
Play Button
Probe-based Confocal Laser Endomicroscopy of the Urinary Tract: The Technique
Authors: Timothy C. Chang, Jen-Jane Liu, Joseph C. Liao.
Institutions: Stanford University School of Medicine , Veterans Affairs Palo Alto Health Care System.
Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory1 and gastrointestinal tracts,2-6 CLE has also been explored in the urinary tract for bladder cancer diagnosis.7-10 Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature.7 The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use.11 Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent—most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile.12 Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy.10 Recent availability of a < 1 mm imaging probe13 opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities14 that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides15 and antibodies for endoscopic imaging of disease processes with molecular specificity.
Medicine, Issue 71, Anatomy, Physiology, Cancer Biology, Surgery, Basic Protocols, Confocal laser endomicroscopy, microscopy, endoscopy, cystoscopy, human bladder, bladder cancer, urology, minimally invasive, cellular imaging
4409
Play Button
Photoacoustic Cystography
Authors: Mansik Jeon, Jeehyun Kim, Chulhong Kim.
Institutions: University at Buffalo, The State University of New York, Pohang University of Science and Technology (POSTECH) , Kyungpook National University.
Conventional pediatric cystography, which is based on diagnostic X-ray using a radio-opaque dye, suffers from the use of harmful ionizing radiation. The risk of bladder cancers in children due to radiation exposure is more significant than many other cancers. Here we demonstrate the feasibility of nonionizing and noninvasive photoacoustic (PA) imaging of urinary bladders, referred to as photoacoustic cystography (PAC), using near-infrared (NIR) optical absorbents (i.e. methylene blue, plasmonic gold nanostructures, or single walled carbon nanotubes) as an optical-turbid tracer. We have successfully imaged a rat bladder filled with the optical absorbing agents using a dark-field confocal PAC system. After transurethral injection of the contrast agents, the rat's bladders were photoacoustically visualized by achieving significant PA signal enhancement. The accumulation was validated by spectroscopic PA imaging. Further, by using only a laser pulse energy of less than 1 mJ/cm2 (1/20 of the safety limit), our current imaging system could map the methylene-blue-filled-rat-bladder at the depth of beyond 1 cm in biological tissues in vivo. Both in vivo and ex vivo PA imaging results validate that the contrast agents were naturally excreted via urination. Thus, there is no concern regarding long-term toxic agent accumulation, which will facilitate clinical translation.
Biomedical Engineering, Issue 76, Biophysics, Medicine, Bioengineering, Cancer Biology, Engineering (General), Electronics and Electrical Engineering, Lasers and Masers, Acoustics, Optics, Photoacoustic cystography, nonionizing imaging, contrast agent, urinary tract reflux, bladder, cystography, photoacoustic tomography, PAT, tomography, imaging, clinical techniques, animal model
50340
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
3791
Play Button
Urinary Bladder Distention Evoked Visceromotor Responses as a Model for Bladder Pain in Mice
Authors: Katelyn E. Sadler, Jarred M. Stratton, Benedict J. Kolber.
Institutions: Duquesne University.
Approximately 3-8 million people in the United States suffer from interstitial cystitis/bladder pain syndrome (IC/BPS), a debilitating condition characterized by increased urgency and frequency of urination, as well as nocturia and general pelvic pain, especially upon bladder filling or voiding. Despite years of research, the cause of IC/BPS remains elusive and treatment strategies are unable to provide complete relief to patients. In order to study nervous system contributions to the condition, many animal models have been developed to mimic the pain and symptoms associated with IC/BPS. One such murine model is urinary bladder distension (UBD). In this model, compressed air of a specific pressure is delivered to the bladder of a lightly anesthetized animal over a set period of time. Throughout the procedure, wires in the superior oblique abdominal muscles record electrical activity from the muscle. This activity is known as the visceromotor response (VMR) and is a reliable and reproducible measure of nociception. Here, we describe the steps necessary to perform this technique in mice including surgical manipulations, physiological recording, and data analysis. With the use of this model, the coordination between primary sensory neurons, spinal cord secondary afferents, and higher central nervous system areas involved in bladder pain can be unraveled. This basic science knowledge can then be clinically translated to treat patients suffering from IC/BPS.
Medicine, Issue 86, Bladder pain, electromyogram (EMG), interstitial cystitis/bladder pain syndrome (IC/BPS), urinary bladder distension (UBD), visceromotor response (VMR)
51413
Play Button
An Orthotopic Model of Murine Bladder Cancer
Authors: Georgina L. Dobek, W. T. Godbey.
Institutions: Tulane University, Tulane University.
In this straightforward procedure, bladder tumors are established in female C57 mice through the use of catheterization, local cauterization, and subsequent cell adhesion. After their bladders are transurethrally catheterized and drained, animals are again catheterized to permit insertion of a platinum wire into bladders without damaging the urethra or bladder. The catheters are made of Teflon to serve as an insulator for the wire, which will conduct electrical current into the bladder to create a burn injury. An electrocautery unit is used to deliver 2.5W to the exposed end of the wire, burning away extracellular layers and providing attachment sites for carcinoma cells that are delivered in suspension to the bladder through a subsequent catheterization. Cells remain in the bladder for 90 minutes, after which the catheters are removed and the bladders allowed to drain naturally. The development of tumor is monitored via ultrasound. Specific attention is paid to the catheterization technique in the accompanying video.
Medicine, Issue 48, Bladder tumor, orthotopic, mouse, ultrasound
2535
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins
Authors: Ruben Magni, Benjamin H. Espina, Lance A. Liotta, Alessandra Luchini, Virginia Espina.
Institutions: George Mason University, Ceres Nanosciences.
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Bioengineering, Issue 90, biomarker, hydrogel, low abundance, mass spectrometry, nanoparticle, plasma, protein, urine
51789
Play Button
A Strategy for Sensitive, Large Scale Quantitative Metabolomics
Authors: Xiaojing Liu, Zheng Ser, Ahmad A. Cluntun, Samantha J. Mentch, Jason W. Locasale.
Institutions: Cornell University, Cornell University.
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.
Chemistry, Issue 87, high-resolution mass spectrometry, metabolomics, positive/negative switching, low mass calibration, Orbitrap
51358
Play Button
Evaluation of Biomaterials for Bladder Augmentation using Cystometric Analyses in Various Rodent Models
Authors: Duong D. Tu, Abhishek Seth, Eun Seok Gil, David L. Kaplan, Joshua R. Mauney, Carlos R. Estrada Jr..
Institutions: Harvard Medical School, Tufts University.
Renal function and continence of urine are critically dependent on the proper function of the urinary bladder, which stores urine at low pressure and expels it with a precisely orchestrated contraction. A number of congenital and acquired urological anomalies including posterior urethral valves, benign prostatic hyperplasia, and neurogenic bladder secondary to spina bifida/spinal cord injury can result in pathologic tissue remodeling leading to impaired compliance and reduced capacity1. Functional or anatomical obstruction of the urinary tract is frequently associated with these conditions, and can lead to urinary incontinence and kidney damage from increased storage and voiding pressures2. Surgical implantation of gastrointestinal segments to expand organ capacity and reduce intravesical pressures represents the primary surgical treatment option for these disorders when medical management fails3. However, this approach is hampered by the limitation of available donor tissue, and is associated with significant complications including chronic urinary tract infection, metabolic perturbation, urinary stone formation, and secondary malignancy4,5. Current research in bladder tissue engineering is heavily focused on identifying biomaterial configurations which can support regeneration of tissues at defect sites. Conventional 3-D scaffolds derived from natural and synthetic polymers such as small intestinal submucosa and poly-glycolic acid have shown some short-term success in supporting urothelial and smooth muscle regeneration as well as facilitating increased organ storage capacity in both animal models and in the clinic6,7. However, deficiencies in scaffold mechanical integrity and biocompatibility often result in deleterious fibrosis8, graft contracture9, and calcification10, thus increasing the risk of implant failure and need for secondary surgical procedures. In addition, restoration of normal voiding characteristics utilizing standard biomaterial constructs for augmentation cystoplasty has yet to be achieved, and therefore research and development of novel matrices which can fulfill this role is needed. In order to successfully develop and evaluate optimal biomaterials for clinical bladder augmentation, efficacy research must first be performed in standardized animal models using detailed surgical methods and functional outcome assessments. We have previously reported the use of a bladder augmentation model in mice to determine the potential of silk fibroin-based scaffolds to mediate tissue regeneration and functional voiding characteristics.11,12 Cystometric analyses of this model have shown that variations in structural and mechanical implant properties can influence the resulting urodynamic features of the tissue engineered bladders11,12. Positive correlations between the degree of matrix-mediated tissue regeneration determined histologically and functional compliance and capacity evaluated by cystometry were demonstrated in this model11,12. These results therefore suggest that functional evaluations of biomaterial configurations in rodent bladder augmentation systems may be a useful format for assessing scaffold properties and establishing in vivo feasibility prior to large animal studies and clinical deployment. In the current study, we will present various surgical stages of bladder augmentation in both mice and rats using silk scaffolds and demonstrate techniques for awake and anesthetized cystometry.
Bioengineering, Issue 66, Medicine, Biomedical Engineering, Physiology, Silk, bladder tissue engineering, biomaterial, scaffold, matrix, augmentation, cystometry
3981
Play Button
Minimally Invasive Establishment of Murine Orthotopic Bladder Xenografts
Authors: Wolfgang Jäger, Igor Moskalev, Claudia Janssen, Tetsutaro Hayashi, Killian M. Gust, Shannon Awrey, Peter C. Black.
Institutions: University of British Columbia.
Orthotopic bladder cancer xenografts are the gold standard to study molecular cellular manipulations and new therapeutic agents in vivo. Suitable cell lines are inoculated either by intravesical instillation (model of nonmuscle invasive growth) or intramural injection into the bladder wall (model of invasive growth). Both procedures are complex and highly time-consuming. Additionally, the superficial model has its shortcomings due to the lack of cell lines that are tumorigenic following instillation. Intramural injection, on the other hand, is marred by the invasiveness of the procedure and the associated morbidity for the host mouse. With these shortcomings in mind, we modified previous methods to develop a minimally invasive approach for creating orthotopic bladder cancer xenografts. Using ultrasound guidance we have successfully performed percutaneous inoculation of the bladder cancer cell lines UM-UC1, UM-UC3 and UM-UC13 into 50 athymic nude. We have been able to demonstrate that this approach is time efficient, precise and safe. With this technique, initially a space is created under the bladder mucosa with PBS, and tumor cells are then injected into this space in a second step. Tumor growth is monitored at regular intervals with bioluminescence imaging and ultrasound. The average tumor volumes increased steadily in in all but one of our 50 mice over the study period. In our institution, this novel approach, which allows bladder cancer xenograft inoculation in a minimally-invasive, rapid and highly precise way, has replaced the traditional model.
Medicine, Issue 84, Bladder cancer, cell lines, xenograft, inoculation, ultrasound, orthotopic model
51123
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
51170
Play Button
Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays
Authors: Colin R. Jackson, Heather L. Tyler, Justin J. Millar.
Institutions: The University of Mississippi.
Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.
Environmental Sciences, Issue 80, Environmental Monitoring, Ecological and Environmental Processes, Environmental Microbiology, Ecology, extracellular enzymes, freshwater microbiology, soil microbiology, microbial activity, enzyme activity
50399
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.