JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats.
L-DOPA is the most effective treatment for Parkinsons disease (PD), but prolonged use leads to disabling motor complications including dyskinesia. Strong evidence supports a role of the subthalamic nucleus (STN) in the pathophysiology of PD whereas its role in dyskinesia is a matter of controversy. Here, we investigated the involvement of STN in dyskinesia, using single-unit extracellular recording, behavioural and molecular approaches in hemi-parkinsonian rats rendered dyskinetic by chronic L-DOPA administration. Our results show that chronic L-DOPA treatment does not modify the abnormal STN activity induced by the 6-hydroxydopamine lesion of the nigrostriatal pathway in this model. Likewise, we observed a loss of STN responsiveness to a single L-DOPA dose both in lesioned and sham animals that received daily L-DOPA treatment. We did not find any correlation between the abnormal involuntary movement (AIM) scores and the electrophysiological parameters of STN neurons recorded 24 h or 20-120 min after the last L-DOPA injection, except for the axial subscores. Nonetheless, unilateral chemical ablation of the STN with ibotenic acid resulted in a reduction in global AIM scores and peak-severity of dyskinesia. In addition, STN lesion decreased the anti-dyskinetogenic effect of buspirone in a reciprocal manner. Striatal protein expression was altered in dyskinetic animals with increases in ?FosB, phosphoDARPP-32, dopamine receptor (DR) D3 and DRD2/DRD1 ratio. The STN lesion attenuated the striatal molecular changes and normalized the DRD2/DRD1 ratio. Taken together, our results show that the STN plays a role, if modest, in the physiopathology of dyskinesias.
Authors: Jörg Hanrieder, Anna Ljungdahl, Malin Andersson.
Published: 02-14-2012
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson's disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson's disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin's opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.
16 Related JoVE Articles!
Play Button
Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease
Authors: Sherri L. Thiele, Ruth Warre, Joanne E. Nash.
Institutions: University of Toronto at Scarborough.
The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven useful in the assessment of potential neuroprotective agents16, it is less suitable for understanding mechanisms underlying symptoms of PD, as this model often fails to induce motor deficits, and shows a wide variability in the extent of lesion17, 18. Here we have developed a stable unilateral 6-OHDA-lesioned mouse model of PD by direct administration of 6-OHDA into the MFB, which consistently causes >95% loss of striatal dopamine (as measured by HPLC), as well as producing the behavioural imbalances observed in the well characterised unilateral 6-OHDA-lesioned rat model of PD. This newly developed mouse model of PD will prove a valuable tool in understanding the mechanisms underlying generation of parkinsonian symptoms.
Medicine, Issue 60, mouse, 6-OHDA, Parkinson’s disease, medial forebrain bundle, unilateral
Play Button
Comprehensive Profiling of Dopamine Regulation in Substantia Nigra and Ventral Tegmental Area
Authors: Michael F. Salvatore, Brandon S. Pruett, Charles Dempsey, Victoria Fields.
Institutions: Louisiana State University Health Sciences Center.
Dopamine is a vigorously studied neurotransmitter in the CNS. Indeed, its involvement in locomotor activity and reward-related behaviour has fostered five decades of inquiry into the molecular deficiencies associated with dopamine regulation. The majority of these inquiries of dopamine regulation in the brain focus upon the molecular basis for its regulation in the terminal field regions of the nigrostriatal and mesoaccumbens pathways; striatum and nucleus accumbens. Furthermore, such studies have concentrated on analysis of dopamine tissue content with normalization to only wet tissue weight. Investigation of the proteins that regulate dopamine, such as tyrosine hydroxylase (TH) protein, TH phosphorylation, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) protein often do not include analysis of dopamine tissue content in the same sample. The ability to analyze both dopamine tissue content and its regulating proteins (including post-translational modifications) not only gives inherent power to interpreting the relationship of dopamine with the protein level and function of TH, DAT, or VMAT2, but also extends sample economy. This translates into less cost, and yet produces insights into the molecular regulation of dopamine in virtually any paradigm of the investigators' choice. We focus the analyses in the midbrain. Although the SN and VTA are typically neglected in most studies of dopamine regulation, these nuclei are easily dissected with practice. A comprehensive readout of dopamine tissue content and TH, DAT, or VMAT2 can be conducted. There is burgeoning literature on the impact of dopamine function in the SN and VTA on behavior, and the impingements of exogenous substances or disease processes therein 1-5. Furthermore, compounds such as growth factors have a profound effect on dopamine and dopamine-regulating proteins, to a comparatively greater extent in the SN or VTA 6-8. Therefore, this methodology is presented for reference to laboratories that want to extend their inquiries on how specific treatments modulate behaviour and dopamine regulation. Here, a multi-step method is presented for the analyses of dopamine tissue content, the protein levels of TH, DAT, or VMAT2, and TH phosphorylation from the substantia nigra and VTA from rodent midbrain. The analysis of TH phosphorylation can yield significant insights into not only how TH activity is regulated, but also the signaling cascades affected in the somatodendritic nuclei in a given paradigm. We will illustrate the dissection technique to segregate these two nuclei and the sample processing of dissected tissue that produces a profile revealing molecular mechanisms of dopamine regulation in vivo, specific for each nuclei (Figure 1).
Neuroscience, Issue 66, Medicine, Physiology, midbrain, substantia nigra, ventral tegmental area, tyrosine hydroxylase, phosphorylation, nigrostriatal, mesoaccumbens, dopamine transporter
Play Button
Deep Brain Stimulation with Simultaneous fMRI in Rodents
Authors: John Robert Younce, Daniel L Albaugh, Yen-Yu Ian Shih.
Institutions: University of North Carolina, University of North Carolina, University of North Carolina, University of North Carolina, University of North Carolina.
In order to visualize the global and downstream neuronal responses to deep brain stimulation (DBS) at various targets, we have developed a protocol for using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to image rodents with simultaneous DBS. DBS fMRI presents a number of technical challenges, including accuracy of electrode implantation, MR artifacts created by the electrode, choice of anesthesia and paralytic to minimize any neuronal effects while simultaneously eliminating animal motion, and maintenance of physiological parameters, deviation from which can confound the BOLD signal. Our laboratory has developed a set of procedures that are capable of overcoming most of these possible issues. For electrical stimulation, a homemade tungsten bipolar microelectrode is used, inserted stereotactically at the stimulation site in the anesthetized subject. In preparation for imaging, rodents are fixed on a plastic headpiece and transferred to the magnet bore. For sedation and paralysis during scanning, a cocktail of dexmedetomidine and pancuronium is continuously infused, along with a minimal dose of isoflurane; this preparation minimizes the BOLD ceiling effect of volatile anesthetics. In this example experiment, stimulation of the subthalamic nucleus (STN) produces BOLD responses which are observed primarily in ipsilateral cortical regions, centered in motor cortex. Simultaneous DBS and fMRI allows the unambiguous modulation of neural circuits dependent on stimulation location and stimulation parameters, and permits observation of neuronal modulations free of regional bias. This technique may be used to explore the downstream effects of modulating neural circuitry at nearly any brain region, with implications for both experimental and clinical DBS.
Neuroscience, Issue 84, Electric Stimulation Therapy, Animal Experimentation, Immobilization, Intubation, Models, Animal, Neuroimaging, Functional Neuroimaging, Stereotaxic Techniques, Functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), blood oxygen level dependent (BOLD), subthalamic nucleus, rodent
Play Button
Assessment of Sensorimotor Function in Mouse Models of Parkinson's Disease
Authors: Sheila M. Fleming, Osunde R. Ekhator, Valentins Ghisays.
Institutions: University of Cincinnati, University of Cincinnati.
Sensitive and reliable behavioral outcome measures are essential to the evaluation of potential therapeutic treatments in preclinical trials for many neurodegenerative diseases. In Parkinson's disease, sensorimotor tests sensitive to varying degrees of nigrostriatal dysfunction are fundamental for testing the efficacy of potential therapeutics. Reliable and quite elegant sensorimotor measures exist for rats, however many of these tests measure sensorimotor asymmetry within the rat and are not entirely suitable for the newer genetic mouse models of PD. We have put together a battery of sensorimotor tests inspired by the sensitive tests in rats and adapted for mice. The test battery highlighted in this study is chosen for a) its sensitivity in a wide variety of mouse models of PD, b) its ease in implementing into a study, and c) its low expense. These tests have proven useful in characterizing novel genetic mouse models of PD as well as in testing potential disease-modifying therapies.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Biomedical Engineering, Anatomy, Physiology, Psychology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Genetics, Behavioral, Psychopharmacology, sensory, motor, mouse, movement disorders, beam, cylinder, animal model
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
Play Button
Homarus Americanus Stomatogastric Nervous System Dissection
Authors: Anne-Elise Tobin, Hilary S. Bierman.
Institutions: Brandeis.
With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings.
Neuroscience, Issue 27, lobster, stomach, neural network, dissection, central pattern generator
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Murine Model for Parkinson's Disease: from 6-OH Dopamine Lesion to Behavioral Test
Authors: Fabio S.L. da Conceição, Stacie Ngo-Abdalla, Jean-Christophe Houzel, Stevens K. Rehen.
Institutions: Universidade Federal do Rio de Janeiro, Brasil.
Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats1. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice2,3, where it has been recently characterized4. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 μL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and months by rating animal rotations induced by dopaminergic agents5. Here, we show full-body contralateral rotations occurring 10 minutes after a single subcutaneous administration of apomorphine, measured one month after the lesion. Outcomes and drawbacks are discussed below.
Neuroscience, Issue 35, neurodegenerative disease, mice, cell therapy, model
Play Button
Primary Culture of Mouse Dopaminergic Neurons
Authors: Florence Gaven, Philippe Marin, Sylvie Claeysen.
Institutions: Institut de Génomique Fonctionnelle, Montpellier, U661, Montpellier, Universités de Montpellier.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.
Neurobiology, Issue 91, Mus musculus, mesencephalon, embryonic, tyrosine hydroxylase, dopamine transporter, Parkinson's disease in vitro model
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Handwriting Analysis Indicates Spontaneous Dyskinesias in Neuroleptic Naïve Adolescents at High Risk for Psychosis
Authors: Derek J. Dean, Hans-Leo Teulings, Michael Caligiuri, Vijay A. Mittal.
Institutions: University of Colorado Boulder, NeuroScript LLC, University of California, San Diego.
Growing evidence suggests that movement abnormalities are a core feature of psychosis. One marker of movement abnormality, dyskinesia, is a result of impaired neuromodulation of dopamine in fronto-striatal pathways. The traditional methods for identifying movement abnormalities include observer-based reports and force stability gauges. The drawbacks of these methods are long training times for raters, experimenter bias, large site differences in instrumental apparatus, and suboptimal reliability. Taking these drawbacks into account has guided the development of better standardized and more efficient procedures to examine movement abnormalities through handwriting analysis software and tablet. Individuals at risk for psychosis showed significantly more dysfluent pen movements (a proximal measure for dyskinesia) in a handwriting task. Handwriting kinematics offers a great advance over previous methods of assessing dyskinesia, which could clearly be beneficial for understanding the etiology of psychosis.
Behavior, Issue 81, Schizophrenia, Disorders with Psychotic Features, Psychology, Clinical, Psychopathology, behavioral sciences, Movement abnormalities, Ultra High Risk, psychosis, handwriting, computer tablet, dyskinesia
Play Button
Intra-Operative Behavioral Tasks in Awake Humans Undergoing Deep Brain Stimulation Surgery
Authors: John T. Gale, Clarissa Martinez-Rubio, Sameer A. Sheth, Emad N. Eskandar.
Institutions: Harvard Medical School, Massachusetts General Hospital.
Deep brain stimulation (DBS) is a surgical procedure that directs chronic, high frequency electrical stimulation to specific targets in the brain through implanted electrodes. Deep brain stimulation was first implemented as a therapeutic modality by Benabid et al. in the late 1980s, when he used this technique to stimulate the ventral intermediate nucleus of the thalamus for the treatment of tremor 1. Currently, the procedure is used to treat patients who fail to respond adequately to medical management for diseases such as Parkinson's, dystonia, and essential tremor. The efficacy of this procedure for the treatment of Parkinson's disease has been demonstrated in well-powered, randomized controlled trials 2. Presently, the U.S. Food and Drug Administration has approved DBS as a treatment for patients with medically refractory essential tremor, Parkinson's disease, and dystonia. Additionally, DBS is currently being evaluated for the treatment of other psychiatric and neurological disorders, such as obsessive compulsive disorder, major depressive disorder, and epilepsy. DBS has not only been shown to help people by improving their quality of life, it also provides researchers with the unique opportunity to study and understand the human brain. Microelectrode recordings are routinely performed during DBS surgery in order to enhance the precision of anatomical targeting. Firing patterns of individual neurons can therefore be recorded while the subject performs a behavioral task. Early studies using these data focused on descriptive aspects, including firing and burst rates, and frequency modulation 3. More recent studies have focused on cognitive aspects of behavior in relation to neuronal activity 4,5. This article will provide a description of the intra-operative methods used to perform behavioral tasks and record neuronal data with awake patients during DBS cases. Our exposition of the process of acquiring electrophysiological data will illuminate the current scope and limitations of intra-operative human experiments.
Medicine, Issue 47, Intra-Operative Physiology, Cognitive Neuroscience, Behavioral Neuroscience, Subthalamic Nucleus, Single-Unit Activity, Parkinson Disease, Deep Brain Stimulation
Play Button
Assessing Forelimb Function after Unilateral Cervical SCI using Novel Tasks: Limb Step-alternation, Postural Instability and Pasta Handling
Authors: Zin Z. Khaing, Sydney A. Geissler, Timothy Schallert, Christine E. Schmidt.
Institutions: The University of Texas at Austin, The University of Texas at Austin, University of Florida.
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI.
Behavior, Issue 79, Behavior, Animal, Motor Activity, Nervous System Diseases, Wounds and Injuries, cervical spinal cord injury, lateral hemisection model, limb alternation, pasta handling, postural instability
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
Play Button
Use of Rotorod as a Method for the Qualitative Analysis of Walking in Rat
Authors: Ian Q. Whishaw, Katie Li, Paul A. Whishaw, Bogdan Gorny, Gerlinde A. Metz.
Institutions: University of Lethbridge.
High speed videoanalysis of the details of movement can provide a source of information about qualitative aspects of walking movements. When walking on a rotorod, animals remain in approximately the same place making repetitive movements of stepping. Thus the task provides a rich source of information on the details of foot stepping movements. Subjects were hemi-Parkinson analogue rats, produced by injection of 6-hydroxydopamine (6-OHDA) into the right nigrostriatal bundle to deplete nigrostriatal dopamine (DA). The present report provides a video analysis illustration of animals previously were filmed from frontal, lateral, and posterior views as they walked (15). Rating scales and frame-by-frame replay of the video records of stepping behavior indicated that the hemi-Parkinson rats were chronically impaired in posture and limb use contralateral to the DA-depletion. The contralateral limbs participated less in initiating and sustaining propulsion than the ipsilateral limbs. These deficits secondary to unilateral DA-depletion show that the rotorod provides a use task for the analysis of stepping movements.
Neuroscience, Issue 22, Rat walking, gait analysis, rotorod, rat forelimb, Parkinson disease model, dopamine depletion
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.