JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Brain networks of explicit and implicit learning.
PLoS ONE
Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences. Using effective connectivity analyses we found that brain networks of different connectivity underlie the two types of learning: while both processes involve activation in a set of cortical and subcortical structures, explicit learners engage a network that uses the insula as a key mediator whereas implicit learners evoke a direct frontal-striatal network. Individual differences in working memory also differentially impact the two types of sequence learning.
Authors: Nicholas L. Balderston, Douglas H. Schultz, Sylvain Baillet, Fred J. Helmstetter.
Published: 06-03-2013
ABSTRACT
In trace fear conditioning a conditional stimulus (CS) predicts the occurrence of the unconditional stimulus (UCS), which is presented after a brief stimulus free period (trace interval)1. Because the CS and UCS do not co-occur temporally, the subject must maintain a representation of that CS during the trace interval. In humans, this type of learning requires awareness of the stimulus contingencies in order to bridge the trace interval2-4. However when a face is used as a CS, subjects can implicitly learn to fear the face even in the absence of explicit awareness*. This suggests that there may be additional neural mechanisms capable of maintaining certain types of "biologically-relevant" stimuli during a brief trace interval. Given that the amygdala is involved in trace conditioning, and is sensitive to faces, it is possible that this structure can maintain a representation of a face CS during a brief trace interval. It is challenging to understand how the brain can associate an unperceived face with an aversive outcome, even though the two stimuli are separated in time. Furthermore investigations of this phenomenon are made difficult by two specific challenges. First, it is difficult to manipulate the subject's awareness of the visual stimuli. One common way to manipulate visual awareness is to use backward masking. In backward masking, a target stimulus is briefly presented (< 30 msec) and immediately followed by a presentation of an overlapping masking stimulus5. The presentation of the mask renders the target invisible6-8. Second, masking requires very rapid and precise timing making it difficult to investigate neural responses evoked by masked stimuli using many common approaches. Blood-oxygenation level dependent (BOLD) responses resolve at a timescale too slow for this type of methodology, and real time recording techniques like electroencephalography (EEG) and magnetoencephalography (MEG) have difficulties recovering signal from deep sources. However, there have been recent advances in the methods used to localize the neural sources of the MEG signal9-11. By collecting high-resolution MRI images of the subject's brain, it is possible to create a source model based on individual neural anatomy. Using this model to "image" the sources of the MEG signal, it is possible to recover signal from deep subcortical structures, like the amygdala and the hippocampus*.
21 Related JoVE Articles!
Play Button
How to Culture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays (MEAs)
Authors: Chadwick M. Hales, John D. Rolston, Steve M. Potter.
Institutions: Emory University School of Medicine, University School of Medicine, Emory University School of Medicine.
For the last century, many neuroscientists around the world have dedicated their lives to understanding how neuronal networks work and why they stop working in various diseases. Studies have included neuropathological observation, fluorescent microscopy with genetic labeling, and intracellular recording in both dissociated neurons and slice preparations. This protocol discusses another technology, which involves growing dissociated neuronal cultures on micro-electrode arrays (also called multi-electrode arrays, MEAs). There are multiple advantages to using this system over other technologies. Dissociated neuronal cultures on MEAs provide a simplified model in which network activity can be manipulated with electrical stimulation sequences through the array's multiple electrodes. Because the network is small, the impact of stimulation is limited to observable areas, which is not the case in intact preparations. The cells grow in a monolayer making changes in morphology easy to monitor with various imaging techniques. Finally, cultures on MEAs can survive for over a year in vitro which removes any clear time limitations inherent with other culturing techniques.1 Our lab and others around the globe are utilizing this technology to ask important questions about neuronal networks. The purpose of this protocol is to provide the necessary information for setting up, caring for, recording from and electrically stimulating cultures on MEAs. In vitro networks provide a means for asking physiologically relevant questions at the network and cellular levels leading to a better understanding of brain function and dysfunction.
Neuroscience, Issue 39, micro-electrode, multi-electrode, neural, MEA, network, plasticity, spike, stimulation, recording, rat
2056
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Study Motor Skill Learning by Single-pellet Reaching Tasks in Mice
Authors: Chia-Chien Chen, Anthony Gilmore, Yi Zuo.
Institutions: University of California, Santa Cruz.
Reaching for and retrieving objects require precise and coordinated motor movements in the forelimb. When mice are repeatedly trained to grasp and retrieve food rewards positioned at a specific location, their motor performance (defined as accuracy and speed) improves progressively over time, and plateaus after persistent training. Once such reaching skill is mastered, its further maintenance does not require constant practice. Here we introduce a single-pellet reaching task to study the acquisition and maintenance of skilled forelimb movements in mice. In this video, we first describe the behaviors of mice that are commonly encountered in this learning and memory paradigm, and then discuss how to categorize these behaviors and quantify the observed results. Combined with mouse genetics, this paradigm can be utilized as a behavioral platform to explore the anatomical underpinnings, physiological properties, and molecular mechanisms of learning and memory.
Behavior, Issue 85, mouse, neuroscience, motor skill learning, single-pellet reaching, forelimb movements, Learning and Memory
51238
Play Button
Combining Transcranial Magnetic Stimulation and fMRI to Examine the Default Mode Network
Authors: Mark A. Halko, Mark C. Eldaief, Jared C. Horvath, Alvaro Pascual-Leone.
Institutions: Beth Israel Deaconess Medical Center.
The default mode network is a group of brain regions that are active when an individual is not focused on the outside world and the brain is at "wakeful rest."1,2,3 It is thought the default mode network corresponds to self-referential or "internal mentation".2,3 It has been hypothesized that, in humans, activity within the default mode network is correlated with certain pathologies (for instance, hyper-activation has been linked to schizophrenia 4,5,6 and autism spectrum disorders 7 whilst hypo-activation of the network has been linked to Alzheimer's and other neurodegenerative diseases 8). As such, noninvasive modulation of this network may represent a potential therapeutic intervention for a number of neurological and psychiatric pathologies linked to abnormal network activation. One possible tool to effect this modulation is Transcranial Magnetic Stimulation: a non-invasive neurostimulatory and neuromodulatory technique that can transiently or lastingly modulate cortical excitability (either increasing or decreasing it) via the application of localized magnetic field pulses.9 In order to explore the default mode network's propensity towards and tolerance of modulation, we will be combining TMS (to the left inferior parietal lobe) with functional magnetic resonance imaging (fMRI). Through this article, we will examine the protocol and considerations necessary to successfully combine these two neuroscientific tools.
Neuroscience, Issue 46, Transcranial Magnetic Stimulation, rTMS, fMRI, Default Mode Network, functional connectivity, resting state
2271
Play Button
Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
Authors: Marc N. Coutanche, Sharon L. Thompson-Schill.
Institutions: University of Pennsylvania.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.
Neuroscience, Issue 89, fMRI, MVPA, connectivity, informational connectivity, functional connectivity, networks, multi-voxel pattern analysis, decoding, classification, method, multivariate
51226
Play Button
Appetitive Associative Olfactory Learning in Drosophila Larvae
Authors: Anthi A. Apostolopoulou, Annekathrin Widmann, Astrid Rohwedder, Johanna E. Pfitzenmaier, Andreas S. Thum.
Institutions: University of Konstanz, University of Fribourg.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain. Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10. Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Biochemistry, Molecular Biology, Physiology, Behavior, Drosophila, fruit fly, larvae, instar, olfaction, olfactory system, odor, 1-octanol, OCT, learning, reward, sugar, feeding, animal model
4334
Play Button
Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic Resonance Imaging
Authors: Marcus Meinzer, Robert Lindenberg, Robert Darkow, Lena Ulm, David Copland, Agnes Flöel.
Institutions: University of Queensland, Charité Universitätsmedizin.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses weak electrical currents administered to the scalp to manipulate cortical excitability and, consequently, behavior and brain function. In the last decade, numerous studies have addressed short-term and long-term effects of tDCS on different measures of behavioral performance during motor and cognitive tasks, both in healthy individuals and in a number of different patient populations. So far, however, little is known about the neural underpinnings of tDCS-action in humans with regard to large-scale brain networks. This issue can be addressed by combining tDCS with functional brain imaging techniques like functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). In particular, fMRI is the most widely used brain imaging technique to investigate the neural mechanisms underlying cognition and motor functions. Application of tDCS during fMRI allows analysis of the neural mechanisms underlying behavioral tDCS effects with high spatial resolution across the entire brain. Recent studies using this technique identified stimulation induced changes in task-related functional brain activity at the stimulation site and also in more distant brain regions, which were associated with behavioral improvement. In addition, tDCS administered during resting-state fMRI allowed identification of widespread changes in whole brain functional connectivity. Future studies using this combined protocol should yield new insights into the mechanisms of tDCS action in health and disease and new options for more targeted application of tDCS in research and clinical settings. The present manuscript describes this novel technique in a step-by-step fashion, with a focus on technical aspects of tDCS administered during fMRI.
Behavior, Issue 86, noninvasive brain stimulation, transcranial direct current stimulation (tDCS), anodal stimulation (atDCS), cathodal stimulation (ctDCS), neuromodulation, task-related fMRI, resting-state fMRI, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), inferior frontal gyrus (IFG)
51730
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance
Authors: Bianca DeBenedictis, J. Bruce Morton.
Institutions: University of Western Ontario.
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
Behavior, Issue 87, Neurosciences, fMRI, Cognitive Control, Development, Functional Connectivity
51003
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Investigating the Neural Mechanisms of Aware and Unaware Fear Memory with fMRI
Authors: David C. Knight, Kimberly H. Wood.
Institutions: University of Alabama at Birmingham.
Pavlovian fear conditioning is often used in combination with functional magnetic resonance imaging (fMRI) in humans to investigate the neural substrates of associative learning 1-5. In these studies, it is important to provide behavioral evidence of conditioning to verify that differences in brain activity are learning-related and correlated with human behavior. Fear conditioning studies often monitor autonomic responses (e.g. skin conductance response; SCR) as an index of learning and memory 6-8. In addition, other behavioral measures can provide valuable information about the learning process and/or other cognitive functions that influence conditioning. For example, the impact unconditioned stimulus (UCS) expectancies have on the expression of the conditioned response (CR) and unconditioned response (UCR) has been a topic of interest in several recent studies 9-14. SCR and UCS expectancy measures have recently been used in conjunction with fMRI to investigate the neural substrates of aware and unaware fear learning and memory processes 15. Although these cognitive processes can be evaluated to some degree following the conditioning session, post-conditioning assessments cannot measure expectations on a trial-to-trial basis and are susceptible to interference and forgetting, as well as other factors that may distort results 16,17 . Monitoring autonomic and behavioral responses simultaneously with fMRI provides a mechanism by which the neural substrates that mediate complex relationships between cognitive processes and behavioral/autonomic responses can be assessed. However, monitoring autonomic and behavioral responses in the MRI environment poses a number of practical problems. Specifically, 1) standard behavioral and physiological monitoring equipment is constructed of ferrous material that cannot be safely used near the MRI scanner, 2) when this equipment is placed outside of the MRI scanning chamber, the cables projecting to the subject can carry RF noise that produces artifacts in brain images, 3) artifacts can be produced within the skin conductance signal by switching gradients during scanning, 4) the fMRI signal produced by the motor demands of behavioral responses may need to be distinguished from activity related to the cognitive processes of interest. Each of these issues can be resolved with modifications to the setup of physiological monitoring equipment and additional data analysis procedures. Here we present a methodology to simultaneously monitor autonomic and behavioral responses during fMRI, and demonstrate the use of these methods to investigate aware and unaware memory processes during fear conditioning.
Neuroscience, Issue 56, fMRI, conditioning, learning, memory, fear, contingency awareness, neuroscience, skin conductance
3083
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
Authors: Zulfi Haneef, Agatha Lenartowicz, Hsiang J. Yeh, Jerome Engel Jr., John M. Stern.
Institutions: Baylor College of Medicine, Michael E. DeBakey VA Medical Center, University of California, Los Angeles, University of California, Los Angeles.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.
Medicine, Issue 90, Default Mode Network (DMN), Temporal Lobe Epilepsy (TLE), fMRI, MRI, functional connectivity MRI (fcMRI), blood oxygenation level dependent (BOLD)
51442
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
51281
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Using Learning Outcome Measures to assess Doctoral Nursing Education
Authors: Glenn H. Raup, Jeff King, Romana J. Hughes, Natasha Faidley.
Institutions: Harris College of Nursing and Health Sciences, Texas Christian University.
Education programs at all levels must be able to demonstrate successful program outcomes. Grades alone do not represent a comprehensive measurement methodology for assessing student learning outcomes at either the course or program level. The development and application of assessment rubrics provides an unequivocal measurement methodology to ensure a quality learning experience by providing a foundation for improvement based on qualitative and quantitatively measurable, aggregate course and program outcomes. Learning outcomes are the embodiment of the total learning experience and should incorporate assessment of both qualitative and quantitative program outcomes. The assessment of qualitative measures represents a challenge for educators in any level of a learning program. Nursing provides a unique challenge and opportunity as it is the application of science through the art of caring. Quantification of desired student learning outcomes may be enhanced through the development of assessment rubrics designed to measure quantitative and qualitative aspects of the nursing education and learning process. They provide a mechanism for uniform assessment by nursing faculty of concepts and constructs that are otherwise difficult to describe and measure. A protocol is presented and applied to a doctoral nursing education program with recommendations for application and transformation of the assessment rubric to other education programs. Through application of these specially designed rubrics, all aspects of an education program can be adequately assessed to provide information for program assessment that facilitates the closure of the gap between desired and actual student learning outcomes for any desired educational competency.
Medicine, Issue 40, learning, outcomes, measurement, program, assessment, rubric
2048
Play Button
Brain Imaging Investigation of the Memory-Enhancing Effect of Emotion
Authors: Andrea Shafer, Alexandru Iordan, Roberto Cabeza, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, Urbana-Champaign, Duke University, University of Illinois, Urbana-Champaign.
Emotional events tend to be better remembered than non-emotional events1,2. One goal of cognitive and affective neuroscientists is to understand the neural mechanisms underlying this enhancing effect of emotion on memory. A method that has proven particularly influential in the investigation of the memory-enhancing effect of emotion is the so-called subsequent memory paradigm (SMP). This method was originally used to investigate the neural correlates of non-emotional memories3, and more recently we and others also applied it successfully to studies of emotional memory (reviewed in4, 5-7). Here, we describe a protocol that allows investigation of the neural correlates of the memory-enhancing effect of emotion using the SMP in conjunction with event-related functional magnetic resonance imaging (fMRI). An important feature of the SMP is that it allows separation of brain activity specifically associated with memory from more general activity associated with perception. Moreover, in the context of investigating the impact of emotional stimuli, SMP allows identification of brain regions whose activity is susceptible to emotional modulation of both general/perceptual and memory-specific processing. This protocol can be used in healthy subjects8-15, as well as in clinical patients where there are alterations in the neural correlates of emotion perception and biases in remembering emotional events, such as those suffering from depression and post-traumatic stress disorder (PTSD)16, 17.
Neuroscience, Issue 51, Affect, Recognition, Recollection, Dm Effect, Neuroimaging
2433
Play Button
Real-time fMRI Biofeedback Targeting the Orbitofrontal Cortex for Contamination Anxiety
Authors: Michelle Hampson, Teodora Stoica, John Saksa, Dustin Scheinost, Maolin Qiu, Jitendra Bhawnani, Christopher Pittenger, Xenophon Papademetris, Todd Constable.
Institutions: Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine .
We present a method for training subjects to control activity in a region of their orbitofrontal cortex associated with contamination anxiety using biofeedback of real-time functional magnetic resonance imaging (rt-fMRI) data. Increased activity of this region is seen in relationship with contamination anxiety both in control subjects1 and in individuals with obsessive-compulsive disorder (OCD),2 a relatively common and often debilitating psychiatric disorder involving contamination anxiety. Although many brain regions have been implicated in OCD, abnormality in the orbitofrontal cortex (OFC) is one of the most consistent findings.3, 4 Furthermore, hyperactivity in the OFC has been found to correlate with OCD symptom severity5 and decreases in hyperactivity in this region have been reported to correlate with decreased symptom severity.6 Therefore, the ability to control this brain area may translate into clinical improvements in obsessive-compulsive symptoms including contamination anxiety. Biofeedback of rt-fMRI data is a new technique in which the temporal pattern of activity in a specific region (or associated with a specific distributed pattern of brain activity) in a subject's brain is provided as a feedback signal to the subject. Recent reports indicate that people are able to develop control over the activity of specific brain areas when provided with rt-fMRI biofeedback.7-12 In particular, several studies using this technique to target brain areas involved in emotion processing have reported success in training subjects to control these regions.13-18 In several cases, rt-fMRI biofeedback training has been reported to induce cognitive, emotional, or clinical changes in subjects.8, 9, 13, 19 Here we illustrate this technique as applied to the treatment of contamination anxiety in healthy subjects. This biofeedback intervention will be a valuable basic research tool: it allows researchers to perturb brain function, measure the resulting changes in brain dynamics and relate those to changes in contamination anxiety or other behavioral measures. In addition, the establishment of this method serves as a first step towards the investigation of fMRI-based biofeedback as a therapeutic intervention for OCD. Given that approximately a quarter of patients with OCD receive little benefit from the currently available forms of treatment,20-22 and that those who do benefit rarely recover completely, new approaches for treating this population are urgently needed.
Medicine, Issue 59, Real-time fMRI, rt-fMRI, neurofeedback, biofeedback, orbitofrontal cortex, OFC, obsessive-compulsive disorder, OCD, contamination anxiety, resting connectivity
3535
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
3178
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotion Regulation
Authors: Sanda Dolcos, Keen Sung, Ekaterina Denkova, Roger A. Dixon, Florin Dolcos.
Institutions: University of Illinois, Urbana-Champaign, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
The ability to control/regulate emotions is an important coping mechanism in the face of emotionally stressful situations. Although significant progress has been made in understanding conscious/deliberate emotion regulation (ER), less is known about non-conscious/automatic ER and the associated neural correlates. This is in part due to the problems inherent in the unitary concepts of automatic and conscious processing1. Here, we present a protocol that allows investigation of the neural correlates of both deliberate and automatic ER using functional magnetic resonance imaging (fMRI). This protocol allows new avenues of inquiry into various aspects of ER. For instance, the experimental design allows manipulation of the goal to regulate emotion (conscious vs. non-conscious), as well as the intensity of the emotional challenge (high vs. low). Moreover, it allows investigation of both immediate (emotion perception) and long-term effects (emotional memory) of ER strategies on emotion processing. Therefore, this protocol may contribute to better understanding of the neural mechanisms of emotion regulation in healthy behaviour, and to gaining insight into possible causes of deficits in depression and anxiety disorders in which emotion dysregulation is often among the core debilitating features.
Neuroscience, Issue 54, Emotion Suppression, Automatic Emotion Control, Deliberate Emotion Control, Goal Induction, Neuroimaging
2430
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.