JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Consistency of network modules in resting-state FMRI connectome data.
PLoS ONE
At rest, spontaneous brain activity measured by fMRI is summarized by a number of distinct resting state networks (RSNs) following similar temporal time courses. Such networks have been consistently identified across subjects using spatial ICA (independent component analysis). Moreover, graph theory-based network analyses have also been applied to resting-state fMRI data, identifying similar RSNs, although typically at a coarser spatial resolution. In this work, we examined resting-state fMRI networks from 194 subjects at a voxel-level resolution, and examined the consistency of RSNs across subjects using a metric called scaled inclusivity (SI), which summarizes consistency of modular partitions across networks. Our SI analyses indicated that some RSNs are robust across subjects, comparable to the corresponding RSNs identified by ICA. We also found that some commonly reported RSNs are less consistent across subjects. This is the first direct comparison of RSNs between ICAs and graph-based network analyses at a comparable resolution.
ABSTRACT
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
18 Related JoVE Articles!
Play Button
Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
Authors: Zulfi Haneef, Agatha Lenartowicz, Hsiang J. Yeh, Jerome Engel Jr., John M. Stern.
Institutions: Baylor College of Medicine, Michael E. DeBakey VA Medical Center, University of California, Los Angeles, University of California, Los Angeles.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.
Medicine, Issue 90, Default Mode Network (DMN), Temporal Lobe Epilepsy (TLE), fMRI, MRI, functional connectivity MRI (fcMRI), blood oxygenation level dependent (BOLD)
51442
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Mapping the After-effects of Theta Burst Stimulation on the Human Auditory Cortex with Functional Imaging
Authors: Jamila Andoh, Robert J. Zatorre.
Institutions: McGill University .
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders.
Neuroscience, Issue 67, Physiology, Physics, Theta burst stimulation, functional magnetic resonance imaging, MRI, auditory cortex, frameless stereotaxy, sound, transcranial magnetic stimulation
3985
Play Button
Correlating Behavioral Responses to fMRI Signals from Human Prefrontal Cortex: Examining Cognitive Processes Using Task Analysis
Authors: Joseph F.X. DeSouza, Shima Ovaysikia, Laura K. Pynn.
Institutions: Centre for Vision Research, York University, Centre for Vision Research, York University.
The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop1 and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional 'word' across the affective faces or the facial 'expressions' of the face stimuli1,2. When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong 'stimulus-response (SR)' associations; hence inhibiting these strong SR's is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task3,4,5,6, where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position. Yet again we measure behavior by recording the eye movements of participants which allows for the sorting of the behavioral responses into correct and error trials7 which then can be correlated to brain activity. Neuroimaging now allows researchers to measure different behaviors of correct and error trials that are indicative of different cognitive processes and pinpoint the different neural networks involved.
Neuroscience, Issue 64, fMRI, eyetracking, BOLD, attention, inhibition, Magnetic Resonance Imaging, MRI
3237
Play Button
Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
Authors: Marc N. Coutanche, Sharon L. Thompson-Schill.
Institutions: University of Pennsylvania.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.
Neuroscience, Issue 89, fMRI, MVPA, connectivity, informational connectivity, functional connectivity, networks, multi-voxel pattern analysis, decoding, classification, method, multivariate
51226
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Method for Simultaneous fMRI/EEG Data Collection during a Focused Attention Suggestion for Differential Thermal Sensation
Authors: Pamela K. Douglas, Maureen Pisani, Rory Reid, Austin Head, Edward Lau, Ebrahim Mirakhor, Jennifer Bramen, Billi Gordon, Ariana Anderson, Wesley T. Kerr, Chajoon Cheong, Mark S. Cohen.
Institutions: University of California, Los Angeles, University of California, Los Angeles, Yale School of Medicine, Korean Basic Science Institute.
In the present work, we demonstrate a method for concurrent collection of EEG/fMRI data. In our setup, EEG data are collected using a high-density 256-channel sensor net. The EEG amplifier itself is contained in a field isolation containment system (FICS), and MRI clock signals are synchronized with EEG data collection for subsequent MR artifact characterization and removal. We demonstrate this method first for resting state data collection. Thereafter, we demonstrate a protocol for EEG/fMRI data recording, while subjects listen to a tape asking them to visualize that their left hand is immersed in a cold-water bath and referred to, here, as the cold glove paradigm. Thermal differentials between each hand are measured throughout EEG/fMRI data collection using an MR compatible temperature sensor that we developed for this purpose. We collect cold glove EEG/fMRI data along with simultaneous differential hand temperature measurements both before and after hypnotic induction. Between pre and post sessions, single modality EEG data are collected during the hypnotic induction and depth assessment process. Our representative results demonstrate that significant changes in the EEG power spectrum can be measured during hypnotic induction, and that hand temperature changes during the cold glove paradigm can be detected rapidly using our MR compatible differential thermometry device.
Behavior, Issue 83, hypnosis, EEG, fMRI, MRI, cold glove, MRI compatible, temperature sensor
3298
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic Resonance Imaging
Authors: Marcus Meinzer, Robert Lindenberg, Robert Darkow, Lena Ulm, David Copland, Agnes Flöel.
Institutions: University of Queensland, Charité Universitätsmedizin.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses weak electrical currents administered to the scalp to manipulate cortical excitability and, consequently, behavior and brain function. In the last decade, numerous studies have addressed short-term and long-term effects of tDCS on different measures of behavioral performance during motor and cognitive tasks, both in healthy individuals and in a number of different patient populations. So far, however, little is known about the neural underpinnings of tDCS-action in humans with regard to large-scale brain networks. This issue can be addressed by combining tDCS with functional brain imaging techniques like functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). In particular, fMRI is the most widely used brain imaging technique to investigate the neural mechanisms underlying cognition and motor functions. Application of tDCS during fMRI allows analysis of the neural mechanisms underlying behavioral tDCS effects with high spatial resolution across the entire brain. Recent studies using this technique identified stimulation induced changes in task-related functional brain activity at the stimulation site and also in more distant brain regions, which were associated with behavioral improvement. In addition, tDCS administered during resting-state fMRI allowed identification of widespread changes in whole brain functional connectivity. Future studies using this combined protocol should yield new insights into the mechanisms of tDCS action in health and disease and new options for more targeted application of tDCS in research and clinical settings. The present manuscript describes this novel technique in a step-by-step fashion, with a focus on technical aspects of tDCS administered during fMRI.
Behavior, Issue 86, noninvasive brain stimulation, transcranial direct current stimulation (tDCS), anodal stimulation (atDCS), cathodal stimulation (ctDCS), neuromodulation, task-related fMRI, resting-state fMRI, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), inferior frontal gyrus (IFG)
51730
Play Button
Best Current Practice for Obtaining High Quality EEG Data During Simultaneous fMRI
Authors: Karen J. Mullinger, Pierluigi Castellone, Richard Bowtell.
Institutions: University of Nottingham , Brain Products GmbH.
Simultaneous EEG-fMRI allows the excellent temporal resolution of EEG to be combined with the high spatial accuracy of fMRI. The data from these two modalities can be combined in a number of ways, but all rely on the acquisition of high quality EEG and fMRI data. EEG data acquired during simultaneous fMRI are affected by several artifacts, including the gradient artefact (due to the changing magnetic field gradients required for fMRI), the pulse artefact (linked to the cardiac cycle) and movement artifacts (resulting from movements in the strong magnetic field of the scanner, and muscle activity). Post-processing methods for successfully correcting the gradient and pulse artifacts require a number of criteria to be satisfied during data acquisition. Minimizing head motion during EEG-fMRI is also imperative for limiting the generation of artifacts. Interactions between the radio frequency (RF) pulses required for MRI and the EEG hardware may occur and can cause heating. This is only a significant risk if safety guidelines are not satisfied. Hardware design and set-up, as well as careful selection of which MR sequences are run with the EEG hardware present must therefore be considered. The above issues highlight the importance of the choice of the experimental protocol employed when performing a simultaneous EEG-fMRI experiment. Based on previous research we describe an optimal experimental set-up. This provides high quality EEG data during simultaneous fMRI when using commercial EEG and fMRI systems, with safety risks to the subject minimized. We demonstrate this set-up in an EEG-fMRI experiment using a simple visual stimulus. However, much more complex stimuli can be used. Here we show the EEG-fMRI set-up using a Brain Products GmbH (Gilching, Germany) MRplus, 32 channel EEG system in conjunction with a Philips Achieva (Best, Netherlands) 3T MR scanner, although many of the techniques are transferable to other systems.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Biophysics, Medicine, Neuroimaging, Functional Neuroimaging, Investigative Techniques, neurosciences, EEG, functional magnetic resonance imaging, fMRI, magnetic resonance imaging, MRI, simultaneous, recording, imaging, clinical techniques
50283
Play Button
Extracting Visual Evoked Potentials from EEG Data Recorded During fMRI-guided Transcranial Magnetic Stimulation
Authors: Boaz Sadeh, Galit Yovel.
Institutions: Tel-Aviv University, Tel-Aviv University.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.
Neuroscience, Issue 87, Transcranial Magnetic Stimulation, Neuroimaging, Neuronavigation, Visual Perception, Evoked Potentials, Electroencephalography, Event-related potential, fMRI, Combined Neuroimaging Methods, Face perception, Body Perception
51063
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Simultaneous fMRI and Electrophysiology in the Rodent Brain
Authors: Wen-ju Pan, Garth Thompson, Matthew Magnuson, Waqas Majeed, Dieter Jaeger, Shella Keilholz.
Institutions: Emory University, Georgia Institute of Technology, Emory University.
To examine the neural basis of the blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) signal, we have developed a rodent model in which functional MRI data and in vivo intracortical recording can be performed simultaneously. The combination of MRI and electrical recording is technically challenging because the electrodes used for recording distort the MRI images and the MRI acquisition induces noise in the electrical recording. To minimize the mutual interference of the two modalities, glass microelectrodes were used rather than metal and a noise removal algorithm was implemented for the electrophysiology data. In our studies, two microelectrodes were separately implanted in bilateral primary somatosensory cortices (SI) of the rat and fixed in place. One coronal slice covering the electrode tips was selected for functional MRI. Electrode shafts and fixation positions were not included in the image slice to avoid imaging artifacts. The removed scalp was replaced with toothpaste to reduce susceptibility mismatch and prevent Gibbs ringing artifacts in the images. The artifact structure induced in the electrical recordings by the rapidly-switching magnetic fields during image acquisition was characterized by averaging all cycles of scans for each run. The noise structure during imaging was then subtracted from original recordings. The denoised time courses were then used for further analysis in combination with the fMRI data. As an example, the simultaneous acquisition was used to determine the relationship between spontaneous fMRI BOLD signals and band-limited intracortical electrical activity. Simultaneous fMRI and electrophysiological recording in the rodent will provide a platform for many exciting applications in neuroscience in addition to elucidating the relationship between the fMRI BOLD signal and neuronal activity.
Neuroscience, Issue 42, fMRI, electrophysiology, rat, BOLD, brain, resting state
1901
Play Button
Monitoring Acupuncture Effects on Human Brain by fMRI
Authors: Kathleen K. S. Hui, Vitaly Napadow, Jing Liu, Ming Li, Ovidiu Marina, Erika E. Nixon, Joshua D. Claunch, Lauren LaCount, Tara Sporko, Kenneth K. Kwong.
Institutions: Massachusetts General Hospital and Harvard Medical School, William Beaumont Hospital.
Functional MRI is used to study the effects of acupuncture on the BOLD response and the functional connectivity of the human brain. Results demonstrate that acupuncture mobilizes a limbic-paralimbic-neocortical network and its anti-correlated sensorimotor/paralimbic network at multiple levels of the brain and that the hemodynamic response is influenced by the psychophysical response. Physiological monitoring may be performed to explore the peripheral response of the autonomic nerve function. This video describes the studies performed at LI4 (hegu), ST36 (zusanli) and LV3 (taichong), classical acupoints that are commonly used for modulatory and pain-reducing actions. Some issues that require attention in the applications of fMRI to acupuncture investigation are noted.
Neuroscience, Issue 38, acupuncture, BOLD fMRI, limbic-paralimbic-neocortical system, psychophysical response, physiological monitoring
1190
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
2379
Play Button
Real-time fMRI Biofeedback Targeting the Orbitofrontal Cortex for Contamination Anxiety
Authors: Michelle Hampson, Teodora Stoica, John Saksa, Dustin Scheinost, Maolin Qiu, Jitendra Bhawnani, Christopher Pittenger, Xenophon Papademetris, Todd Constable.
Institutions: Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine .
We present a method for training subjects to control activity in a region of their orbitofrontal cortex associated with contamination anxiety using biofeedback of real-time functional magnetic resonance imaging (rt-fMRI) data. Increased activity of this region is seen in relationship with contamination anxiety both in control subjects1 and in individuals with obsessive-compulsive disorder (OCD),2 a relatively common and often debilitating psychiatric disorder involving contamination anxiety. Although many brain regions have been implicated in OCD, abnormality in the orbitofrontal cortex (OFC) is one of the most consistent findings.3, 4 Furthermore, hyperactivity in the OFC has been found to correlate with OCD symptom severity5 and decreases in hyperactivity in this region have been reported to correlate with decreased symptom severity.6 Therefore, the ability to control this brain area may translate into clinical improvements in obsessive-compulsive symptoms including contamination anxiety. Biofeedback of rt-fMRI data is a new technique in which the temporal pattern of activity in a specific region (or associated with a specific distributed pattern of brain activity) in a subject's brain is provided as a feedback signal to the subject. Recent reports indicate that people are able to develop control over the activity of specific brain areas when provided with rt-fMRI biofeedback.7-12 In particular, several studies using this technique to target brain areas involved in emotion processing have reported success in training subjects to control these regions.13-18 In several cases, rt-fMRI biofeedback training has been reported to induce cognitive, emotional, or clinical changes in subjects.8, 9, 13, 19 Here we illustrate this technique as applied to the treatment of contamination anxiety in healthy subjects. This biofeedback intervention will be a valuable basic research tool: it allows researchers to perturb brain function, measure the resulting changes in brain dynamics and relate those to changes in contamination anxiety or other behavioral measures. In addition, the establishment of this method serves as a first step towards the investigation of fMRI-based biofeedback as a therapeutic intervention for OCD. Given that approximately a quarter of patients with OCD receive little benefit from the currently available forms of treatment,20-22 and that those who do benefit rarely recover completely, new approaches for treating this population are urgently needed.
Medicine, Issue 59, Real-time fMRI, rt-fMRI, neurofeedback, biofeedback, orbitofrontal cortex, OFC, obsessive-compulsive disorder, OCD, contamination anxiety, resting connectivity
3535
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.