JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The development of a canine anorectal autotransplantation model based on blood supply: a preliminary case report.
Colostomy is conventionally the only treatment for anal dysfunction. Recently, a few trials of anorectal transplantation in animals have been published; however, further development of this technique is required. Moreover, it is crucial to perform this research in dogs, which resemble humans in anorectal anatomy and biology. We designed a canine anorectal transplantation model, wherein anorectal autotransplantation was performed by anastomoses of the rectum, inferior mesenteric artery (IMA) and vein, and pudendal nerves. Resting pressure in the anal canal and anal canal pressure fluctuation were measured before and after surgery. Graft pathology was examined three days after surgery. The anal blood supply was compared with that in three beagles using indocyanine green (ICG) fluorescence angiography. The anorectal graft had sufficient arterial blood supply from the IMA; however, the grafts distal end was congested and necrotized. Functional examination demonstrated reduced resting pressure and the appearance of an irregular anal canal pressure wave after surgery. ICG angiography showed that the pudendal arteries provided more blood flow than the IMA to the anal segment. This is the first canine model of preliminary anorectal autotransplantation, and it demonstrates the possibility of establishing a transplantation model in dogs using appropriate vascular anastomoses, thus contributing to the progress of anorectal transplantation.
Authors: Fengchun Liu, Sang Mo Kang.
Published: 07-19-2007
The mouse heterotopic heart transplantation has been used widely since it was introduced by Drs. Corry and Russell in 1973. It is particularly valuable for studying rejection and immune response now that newer transgenic and gene knockout mice are available, and a large number of immunologic reagents have been developed. The heart transplant model is less stringent than the skin transplant models, although technically more challenging. We have developed a modified technique and have completed over 1000 successful cases of heterotopic heart transplantation in mice. When making anastomosis of the ascending aorta and abdominal aorta, two stay sutures are placed at the proximal and distal apexes of recipient abdominal aorta with the donor s ascending aorta, then using 11-0 suture for anastomosis on both side of aorta with continuing sutures. The stay sutures make the anastomosis easier and 11-0 is an ideal suture size to avoid bleeding and thrombosis. When making anastomosis of pulmonary artery and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s pulmonary artery. The left wall of the inferior vena cava and donor s pulmonary artery is closed with continuing sutures in the inside of the inferior vena cava after, one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s pulmonary artery are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
28 Related JoVE Articles!
Play Button
A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research
Authors: Zuhaib Ibrahim, Damon S. Cooney, Jaimie T. Shores, Justin M. Sacks, Eric G. Wimmers, Steven C. Bonawitz, Chad Gordon, Dawn Ruben, Stefan Schneeberger, W. P. Andrew Lee, Gerald Brandacher.
Institutions: Johns Hopkins University School of Medicine.
Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA.
Medicine, Issue 80, Upper Extremity, Swine, Microsurgery, Tissue Transplantation, Transplantation Immunology, Surgical Procedures, Operative, Vascularized Composite Allografts, reconstructive transplantation, translational research, swine, hind limb allotransplantation, bone marrow, osteomyocutaneous, microvascular anastomosis, immunomodulation
Play Button
Production and Purification of Non Replicative Canine Adenovirus Type 2 Derived Vectors
Authors: Marion Szelechowski, Corinne Bergeron, Daniel Gonzalez-Dunia, Bernard Klonjkowski.
Institutions: Université Toulouse 3, INRA ENVA ANSES.
Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 1010 infectious particles per ml and can be directly administrated in vivo.
Immunology, Issue 82, Canine Adenovirus, viral vector, vaccination, central nervous system, gene therapy
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Technique of Subnormothermic Ex Vivo Liver Perfusion for the Storage, Assessment, and Repair of Marginal Liver Grafts
Authors: Jan M. Knaak, Vinzent N. Spetzler, Nicolas Goldaracena, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital, Toronto General Hospital, Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation. These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past. In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved. This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.
Medicine, Issue 90, ex vivo liver perfusion, marginal grafts, DCD
Play Button
Murine Heterotopic Heart Transplant Technique
Authors: Robert J. Plenter, Todd J. Grazia.
Institutions: University of Colorado Denver.
It is now over forty years since this technique was first reported by Corry, Wynn and Russell. Although it took some years for other labs to become proficient in and utilize this technique, it is now widely used by many laboratories around the world. A significant refinement to the original technique was developed and reported in 2001 by Niimi. Described here are the techniques that have evolved over more than a decade in the hands of three surgeons (Plenter, Grazia, Pietra) in our center. These techniques are now being passed on to a younger generation of surgeons and researchers. Based largely on the Niimi experience, the procedures used have evolved in the fine details - details which we will endeavor to relate here in such a way that others may be able to use this very useful model. Like Niimi, we have found that a video aid to learning is a priceless resource for the beginner.
Medicine, Issue 89, Heart Transplantation, Transplantation Immunology, Graft Rejection, Cardiac, Transplant, Mouse, Immunology, Rejection, Surgery
Play Button
Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding
Authors: Philip Chung, J. Alex Heller, Mozziyar Etemadi, Paige E. Ottoson, Jonathan A. Liu, Larry Rand, Shuvo Roy.
Institutions: University of California, San Francisco, University of California, San Francisco, University of Southern California.
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.
Bioengineering, Issue 88, liquid injection molding, reaction injection molding, molds, 3D printing, fused deposition modeling, rapid prototyping, medical devices, low cost, low volume, rapid turnaround time.
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Mouse Kidney Transplantation: Models of Allograft Rejection
Authors: George H. Tse, Emily E. Hesketh, Michael Clay, Gary Borthwick, Jeremy Hughes, Lorna P. Marson.
Institutions: The University of Edinburgh.
Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.
Medicine, Issue 92, transplantation, mouse model, surgery, kidney, immunology, rejection
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
Play Button
Design of a Biaxial Mechanical Loading Bioreactor for Tissue Engineering
Authors: Bahar Bilgen, Danielle Chu, Robert Stefani, Roy K. Aaron.
Institutions: The Warren Alpert Brown Medical School of Brown University and the Rhode Island Hospital, VA Medical Center, Providence, RI, University of Texas Southwestern Medical Center .
We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0.15% to 0.25% full scale.
Bioengineering, Issue 74, Biomedical Engineering, Biophysics, Cellular Biology, Medicine, Anatomy, Physiology, Cell Engineering, Bioreactors, Culture Techniques, Cell Engineering, Tissue Engineering, compression loads, shear loads, Tissues, bioreactor, mechanical loading, compression, shear, musculoskeletal, cartilage, bone, transplantation, cell culture
Play Button
Manufacturing Devices and Instruments for Easier Rat Liver Transplantation
Authors: Graziano Oldani, Stephanie Lacotte, Lorenzo Orci, Philippe Morel, Gilles Mentha, Christian Toso.
Institutions: University of Geneva Hospitals, University of Pavia , University of Geneva, University of Geneva Hospitals.
Orthotopic rat liver transplantation is a popular model, which has been shown in a recent JoVE paper with the use of the "quick-linker" device. This technique allows for easier venous cuff-anatomoses after a reasonable learning curve. The device is composed of two handles, which are carved out from scalpel blades, one approximator, which is obtained by modifying Kocher's forceps, and cuffs designed from fine-bore polyethylene tubing. The whole process can be performed at a low-cost using common laboratory material. The present report provides a step-by-step protocol for the design of the required pieces and includes stencils.
Medicine, Issue 75, Biomedical Engineering, Bioengineering, Mechanical Engineering, Anatomy, Physiology, Surgery, Tissue Engineering, Liver Transplantation, Liver, transplantation, rat, quick-linker, orthotopic, graft, cuff, clinical techniques, animal model
Play Button
Small Bowel Transplantation In Mice
Authors: Fengchun Liu, Sang-Mo Kang.
Institutions: University of California, San Francisco - UCSF.
Since 1990, the development of tacrolimus-based immunosuppression and improved surgical techniques, the increased array of potent immunosuppressive medications, infection prophylaxis, and suitable patient selection helped improve actuarial graft and patient survival rates for all types of intestine transplantation. Patients with irreversible intestinal failure and complications of parenteral nutrition should now be routinely considered for small intestine transplantation. However, Survival rates for small intestinal transplantation have been slow to improve compares increasingly favorably with renal, liver, heart and lung. The small bowel transplantation is still unsatisfactory compared with other organs. Further progress may depend on better understanding of immunology and physiology of the graft and can be greatly facilitated by animal models. A wider use of mouse small bowel transplantation model is needed in the study of immunology and physiology of the transplantation gut as well as efficient methods in diagnosing early rejection. However, this model is limited to use because the techniques involved is an extremely technically challenging. We have developed a modified technique. When making anastomosis of portal vein and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s portal vein. The left wall of the inferior vena cava and donor s portal vein is closed with continuing sutures in the inside of the inferior vena cava after, after one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s portal vein are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Issue 7, Immunology, Transplantation, Transplant Rejection, Small Bowel
Play Button
Murine Renal Transplantation Procedure
Authors: Jiao-Jing Wang, Sara Hockenheimer, Alice A. Bickerstaff, Gregg A. Hadley.
Institutions: The Ohio State University, The Ohio State University.
Renal orthotopic transplantation in mice is a technically challenging procedure. Although the first kidney transplants in mice were performed by Russell et al over 30 years ago (1) and refined by Zhang et al years later (2), few people in the world have mastered this procedure. In our laboratory we have successfully performed 1200 orthotopic kidney transplantations with > 90% survival rate. The key points for success include stringent control of reperfusion injury, bleeding and thrombosis, both during the procedure and post-transplantation, and use of 10-0 instead of 11-0 suture for anastomoses. Post-operative care and treatment of the recipient is extremely important to transplant success and evaluation. All renal graft recipients receive antibiotics in the form of an injection of penicillin immediately post-transplant and sulfatrim in the drinking water continually. Overall animal health is evaluated daily and whole blood creatinine analyses are performed routinely with a portable I-STAT machine to assess graft function.
immunology, Issue 29, mouse, kidney, renal, transplantation, procedure
Play Button
Orthotopic Hind-Limb Transplantation in Rats
Authors: Robert Sucher, Rupert Oberhuber, Christian Margreiter, Guido Rumberg, Rishi Jindal, WP Andrew Lee, Raimund Margreiter, Johann Pratschke, Stefan Schneeberger, Gerald Brandacher.
Institutions: Innsbruck Medical University, University of Pittsburgh Medical Center.
Composite tissue allotransplantation (CTA) now represents a valid therapeutic option after the loss of a hand, forearm or digits and has become a novel therapeutic entity in reconstructive surgery. However, long term high-dose multi-drug immunosuppressive therapy is required to ensure graft survival, bearing the risk of serious side effects which halters broader application. Further progression in this field may depend on better understanding of basic immunology and ischemia reperfusion injury in composite tissue grafts. To date, orthotopic hind limb transplantation in rats has been the preferred rodent model for reconstructive transplantation (RT), however, it is an extremely demanding procedure that requires extraordinary microsurgical skills for reattachment of vasculature, bones, muscles and nerves. We have introduced the vascular cuff anastomosis technique to this model, providing a rapid and reliable approach to rat hind limb transplantation. This technique simplifies and shortens the surgical procedure and enables surgeons with basic microsurgical experience to successfully perform the operation with high survival and low complication rates. The technique seems to be well suited for immunological as well as ischemia reperfusion injury (IRI) studies.
JoVE Immunology, Issue 41, rat, hind limb, composite tissue, reconstructive transplantation
Play Button
The C-seal: A Biofragmentable Drain Protecting the Stapled Colorectal Anastomosis from Leakage
Authors: Annelien N. Morks, Klaas Havenga, Henk O. ten Cate Hoedemaker, Rutger J. Ploeg.
Institutions: University Medical Center Groningen.
Colorectal anastomotic leakage (AL) is a serious complication in colorectal surgery leading to high morbidity and mortality rates1. The incidence of AL varies between 2.5 and 20% 2-5. Over the years, many strategies aimed at lowering the incidence of anastomotic leakage have been examined6, 7. The cause of AL is probably multifactorial. Etiological factors include insufficient arterial blood supply, tension on the anastomosis, hematoma and/or infection at the anastomotic site, and co-morbid factors of the patient as diabetes and atherosclerosis8. Furthermore, some anastomoses may be insufficient from the start due to technical failure. Currently a new device is developed in our institute aimed at protecting the colorectal anastomosis and lowering the incidence of AL. This so called C-seal is a biofragmentable drain, which is stapled to the anastomosis with the circular stapler. It covers the luminal side of the colorectal anastomosis thereby preventing leakage. The C-seal is a thin-walled tube-like drain, with an approximate diameter of 4 cm and an approximate length of 25 cm (figure 1). It is a tubular device composed of biodegradable polyurethane. Two flaps with adhesive tape are found at one end of the tube. These flaps are used to attach the C-seal to the anvil of the circular stapler, so that after the anastomosis is made the C-seal can be pulled through the anus. The C-seal remains in situ for at least 10 days. Thereafter it will lose strength and will degrade to be secreted from the body together with the gastrointestinal natural contents. The C-seal does not prevent the formation of dehiscences. However, it prevents extravasation of faeces into the peritoneal cavity. This means that a gap at the anastomotic site does not lead to leakage. Currently, a phase II study testing the C-seal in 35 patients undergoing (colo-)rectal resection with stapled anastomosis is recruiting. The C-seal can be used in both open procedures as well as laparoscopic procedures. The C-seal is only applied in stapled anastomoses within 15cm from the anal verge. In the video, application of the C-seal is shown in an open extended sigmoid resection in a patient suffering from diverticular disease with a stenotic colon.
Medicine, Issue 45, Surgery, low anterior resection, colorectal anastomosis, anastomotic leakage, drain, rectal cancer, circular stapler
Play Button
In Vivo Canine Muscle Function Assay
Authors: Martin K. Childers, Robert W. Grange, Joe N. Kornegay.
Institutions: Wake Forest University, Virginia Polytechnic Institute and State University, University of North Carolina-Chapel Hill.
We describe a minimally-invasive and reproducible method to measure canine pelvic limb muscle strength and muscle response to repeated eccentric contractions. The pelvic limb of an anesthetized dog is immobilized in a stereotactic frame to align the tibia at a right angle to the femur. Adhesive wrap affixes the paw to a pedal mounted on the shaft of a servomotor to measure torque. Percutaneous nerve stimulation activates pelvic limb muscles of the paw to either push (extend) or pull (flex) against the pedal to generate isometric torque. Percutaneous tibial nerve stimulation activates tibiotarsal extensor muscles. Repeated eccentric (lengthening) contractions are induced in the tibiotarsal flexor muscles by percutaneous peroneal nerve stimulation. The eccentric protocol consists of an initial isometric contraction followed by a forced stretch imposed by the servomotor. The rotation effectively lengthens the muscle while it contracts, e.g., an eccentric contraction. During stimulation flexor muscles are subjected to an 800 msec isometric and 200 msec eccentric contraction. This procedure is repeated every 5 sec. To avoid fatigue, 4 min rest follows every 10 contractions with a total of 30 contractions performed.
Medicine, Issue 50, dog, muscle strength, muscle force, exercise, eccentric contraction, muscle damage, stretch
Play Button
Human Internal Mammary Artery (IMA) Transplantation and Stenting: A Human Model to Study the Development of In-Stent Restenosis
Authors: Xiaoqin Hua, Tobias Deuse, Evangelos D. Michelakis, Alois Haromy, Phil S. Tsao, Lars Maegdefessel, Reinhold G. Erben, Claudia Bergow, Boris B. Behnisch, Hermann Reichenspurner, Robert C. Robbins, Sonja Schrepfer.
Institutions: TSI-Lab, Germany, University of Hamburg, University of Alberta, Stanford University School of Medicine , University of Veterinary Medicine, Vienna, Hechingen, Stanford University School of Medicine.
Preclinical in vivo research models to investigate pathobiological and pathophysiological processes in the development of intimal hyperplasia after vessel stenting are crucial for translational approaches1,2. The commonly used animal models include mice, rats, rabbits, and pigs3-5. However, the translation of these models into clinical settings remains difficult, since those biological processes are already studied in animal vessels but never performed before in human research models6,7. In this video we demonstrate a new humanized model to overcome this translational gap. The shown procedure is reproducible, easy, and fast to perform and is suitable to study the development of intimal hyperplasia and the applicability of diverse stents. This video shows how to perform the stent technique in human vessels followed by transplantation into immunodeficient rats, and identifies the origin of proliferating cells as human.
Biomedical Engineering, Issue 63, physiology, stent, Human Internal Mammary Artery (IMA) Transplantation, restenosis
Play Button
Orthotopic Small Bowel Transplantation in Rats
Authors: Koji Kitamura, Martin W. von Websky, Ichiro Ohsawa, Azin Jaffari, Thomas C. Pech, Tim Vilz, Sven Wehner, Shinji Uemoto, Joerg C. Kalff, Nico Schaefer.
Institutions: University of Bonn, Germany, Kyoto University Hospital.
Small bowel transplantation has become an accepted clinical option for patients with short gut syndrome and failure of parenteral nutrition (irreversible intestinal failure). In specialized centers improved operative and managing strategies have led to excellent short- and intermediate term patient and graft survival while providing high quality of life 1,3. Unlike in the more common transplantation of other solid organs (i.e. heart, liver) many underlying mechanisms of graft function and immunologic alterations induced by intestinal transplantation are not entirely known6,7. Episodes of acute rejection, sepsis and chronic graft failure are the main obstacles still contributing to less favorable long term outcome and hindering a more widespread employment of the procedure despite a growing number of patients on home parenteral nutrition who would potentially benefit from such a transplant. The small intestine contains a large number of passenger leucocytes commonly referred to as part of the gut associated lymphoid system (GALT) this being part of the reason for the high immunogenity of the intestinal graft. The presence and close proximity of many commensals and pathogens in the gut explains the severity of sepsis episodes once graft mucosal integrity is compromised (for example by rejection). To advance the field of intestinal- and multiorgan transplantation more data generated from reliable and feasible animal models is needed. The model provided herein combines both reliability and feasibility once established in a standardized manner and can provide valuable insight in the underlying complex molecular, cellular and functional mechanisms that are triggered by intestinal transplantation. We have successfully used and refined the described procedure over more than 5 years in our laboratory 8-11. The JoVE video-based format is especially useful to demonstrate the complex procedure and avoid initial pitfalls for groups planning to establish an orthotopic rodent model investigating intestinal transplantation.
Medicine, Issue 69, Anatomy, Physiology, Immunology, intestinal transplantation, orthotopic small bowel transplantation, acute rejection, small bowel, surgery, operation, rat
Play Button
Orthotopic Aortic Transplantation in Mice for the Study of Vascular Disease
Authors: Lingling Guo, Anupam Agarwal, James F. George.
Institutions: The University of Alabama at Birmingham , The University of Alabama at Birmingham .
Vascular procedures involving anastomoses in the mouse are generally thought to be difficult and highly dependent on the skill of the individual surgeon. This is largely true, but there are a number of important principles that can reduce the difficulty of these procedures and enhance reproducibility. Orthotopic aortic transplantation is an excellent procedure in which to learn these principles because it involves only two end-to-end anastomoses, but requires good suturing technique and handling of the vessels for consistent success. This procedure begins with the procurement of a length of abdominal aorta from a donor animal, followed by division of the native aorta in the recipient. The procured aorta is then placed between the divided ends of the recipient aorta and sutured into place using end-to-end anastomoses. To accomplish this objective successfully requires a high degree of concentration, good tools, a steady hand, and an appreciation of how easily the vasculature of a mouse can be damaged, resulting in thrombosis. Learning these important principles is what occupies most of the beginner's time when learning microsurgery in small rodents. Throughout this protocol, we refer to these important points. This model can be used to study vascular disease in a variety of different experimental systems1-8. In the context shown here, it is most often used for the study of post-transplant vascular disease, a common long-term complication of solid organ transplantation in which intimal hyperplasia occurs within the allograft. The primary advantage of the model is that it facilitates quantitative morphometric analyses and the transplanted vessel lies contiguous to the endogenous vessel, which can serve as an additional control9. The technique shown here is most often used for mice weighing 18-25 grams. We have accumulated most of our experience using the C57BL/6J, BALB/cJ, and C3H/HeJ strains.
Medicine, Issue 69, Anatomy, Physiology, Surgery, Vascular surgery, mice, artery, aorta, transplantation, vascular disease, aortic transplantation, orthotopic, mouse vascular disease models
Play Button
Surgical Procedures for a Rat Model of Partial Orthotopic Liver Transplantation with Hepatic Arterial Reconstruction
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Institutions: RWTH-Aachen University, Kyoto University .
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Immunology, Surgery, liver transplantation, liver, hepatic, partial, orthotopic, split, rat, graft, transplantation, microsurgery, procedure, clinical, technique, artery, arterialization, arterialized, anastomosis, reperfusion, rat, animal model
Play Button
Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations
Authors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia A. Trayanova.
Institutions: Johns Hopkins University.
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Bioengineering, Issue 71, Biomedical Engineering, Medicine, Anatomy, Physiology, Cardiology, Myocytes, Cardiac, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, MRI, Diffusion Magnetic Resonance Imaging, Cardiac Electrophysiology, computerized simulation (general), mathematical modeling (systems analysis), Cardiomyocyte, biomedical image processing, patient-specific modeling, Electrophysiology, simulation
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
Play Button
Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI
Authors: Sari Sabban, Hongtu Ye, Birgit Helm.
Institutions: King Abdulaziz University, The University of Sheffield.
The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains 1. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout 2, 3. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml-1 of antigen. This assay was modified from previous assays used to study human and canine allergic responses 4, 5. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease 6, 2, 3.
Immunology, Issue 93, Allergy, Immunology, IgE, Fcε, RI, horse (Equus caballus), Immunoassay
Play Button
Microsurgical Clip Obliteration of Middle Cerebral Aneurysm Using Intraoperative Flow Assessment
Authors: Bob S. Carter, Christopher Farrell, Christopher Owen.
Institutions: Havard Medical School, Massachusetts General Hospital.
Cerebral aneurysms are abnormal widening or ballooning of a localized segment of an intracranial blood vessel. Surgical clipping is an important treatment for aneurysms which attempts to exclude blood from flowing into the aneurysmal segment of the vessel while preserving blood flow in a normal fashion. Improper clip placement may result in residual aneurysm with the potential for subsequent aneurysm rupture or partial or full occlusion of distal arteries resulting in cerebral infarction. Here we describe the use of an ultrasonic flow probe to provide quantitative evaluation of arterial flow before and after microsurgical clip placement at the base of a middle cerebral artery aneurysm. This information helps ensure adequate aneurysm reconstruction with preservation of normal distal blood flow.
Medicine, Issue 31, Aneurysm, intraoperative, brain, surgery, surgical clipping, blood flow, aneurysmal segment, ultrasonic flow probe
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.