JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function.
Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-?4-strand in RBD6 is essential for function.
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Published: 11-03-2011
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
24 Related JoVE Articles!
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
Play Button
Chromatographic Purification of Highly Active Yeast Ribosomes
Authors: Arturas Meskauskas, Jonathan A. Leshin, Jonathan D. Dinman.
Institutions: University of Maryland , Vilnius University.
Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.
Cell Biology, Issue 56, Ribosome, purification, DNA, yeast, chromatography, Saccharomyces cerevisiae
Play Button
Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding
Authors: David Almond, Timothy Cardozo.
Institutions: School of Medicine, New York University.
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Infection, Issue 43, HIV-1, structure-activity relationships, ab initio simulations, antibody-mediated neutralization, vaccine design
Play Button
Mosaic Zebrafish Transgenesis for Evaluating Enhancer Sequences
Authors: Erika Kague, Christopher Weber, Shannon Fisher.
Institutions: University of Pennsylvania .
The completion of the human genome sequence, along with that of many other species, has highlighted the challenge of ascribing specific function to non coding sequences. One prominent function carried out by the non coding fraction of the genome is to regulate gene transcription; however, there are no effective methods to broadly predict cis-regulatory elements from primary DNA sequence. We have developed an efficient protocol to functionally evaluate potential cis-regulatory elements through zebrafish transgenesis. Our approach offers significant advantages over cell-culture based techniques for developmentally important genes, since it provides information on spatial and temporal gene regulation. Conversely, it is faster and less expensive than similar experiments in transgenic mice, and we routinely apply it to sequences isolated from the human genome. Here we demonstrate our approach to selecting elements for testing based on sequence conservation and our protocol for cloning sequences and microinjecting them into zebrafish embryos.
Cellular Biology, Issue 41, zebrafish, transgenesis, microinjection, GFP, enhancers, transposon
Play Button
Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase
Authors: Richard T. Pomerantz, Mike O'Donnell.
Institutions: Rockefeller University.
In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventually resumes elongation after displacing the RNAP from DNA. We also find that the transcription-repair coupling factor, Mfd, promotes direct restart of the fork following the collision by facilitating displacement of the RNAP. These findings demonstrate the intrinsic stability of the replication apparatus and a novel role for the transcription-coupled repair pathway in promoting replication past a RNAP block.
Cellular Biology, Issue 38, replication, transcription, transcription-coupled repair, replisome, RNA polymerase, collision
Play Button
High Resolution Electron Microscopy of the Helicobacter pylori Cag Type IV Secretion System Pili Produced in Varying Conditions of Iron Availability
Authors: Kathryn Patricia Haley, Eric Joshua Blanz, Jennifer Angeline Gaddy.
Institutions: Vanderbilt University School of Medicine, U. S. Dept. of Veterans Affairs.
Helicobacter pylori is a helical-shaped, gram negative bacterium that colonizes the human gastric niche of half of the human population1,2. H. pylori is the primary cause of gastric cancer, the second leading cause of cancer-related deaths worldwide3. One virulence factor that has been associated with increased risk of gastric disease is the Cag-pathogenicity island, a 40-kb region within the chromosome of H. pylori that encodes a type IV secretion system and the cognate effector molecule, CagA4,5. The Cag-T4SS is responsible for translocating CagA and peptidoglycan into host epithelial cells5,6. The activity of the Cag-T4SS results in numerous changes in host cell biology including upregulation of cytokine expression, activation of proinflammatory pathways, cytoskeletal remodeling, and induction of oncogenic cell-signaling networks5-8. The Cag-T4SS is a macromolecular machine comprised of sub-assembly components spanning the inner and outer membrane and extending outward from the cell into the extracellular space. The extracellular portion of the Cag-T4SS is referred to as the “pilus”5. Numerous studies have demonstrated that the Cag-T4SS pili are formed at the host-pathogen interface9,10. However, the environmental features that regulate the biogenesis of this important organelle remain largely obscure. Recently, we reported that conditions of low iron availability increased the Cag-T4SS activity and pilus biogenesis. Here we present an optimized protocol to grow H. pylori in varying conditions of iron availability prior to co-culture with human gastric epithelial cells. Further, we present the comprehensive protocol for visualization of the hyper-piliated phenotype exhibited in iron restricted conditions by high resolution scanning electron microscopy analyses.
Infection, Issue 93, Helicobacter pylori, iron acquisition, cag pathogenicity island, type IV secretion, pili
Play Button
Visualization of Mitochondrial DNA Replication in Individual Cells by EdU Signal Amplification
Authors: Kristine M. Haines, Eva L. Feldman, Stephen I. Lentz.
Institutions: University of Michigan, University of Michigan, University of Michigan.
Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells1-3. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication4. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2'-deoxyuridine (EdU)5-7 with a tyramide signal amplification (TSA)8 protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU5-7 does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers9-10. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.
Neuroscience, Issue 45, mitochondria, mitochondrial DNA (mtDNA), 5-ethynyl-2'-deoxyuridine (EdU), labeling, tyramide signal amplification, mtDNA biogenesis, dorsal root ganglion neurons
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Analysis of Translation Initiation During Stress Conditions by Polysome Profiling
Authors: Laëtitia Coudert, Pauline Adjibade, Rachid Mazroui.
Institutions: Laval University, CHU de Quebec Research Center.
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.
Cellular Biology, Issue 87, Translation initiation, polysome profile, sucrose gradient, protein and RNA isolation, stress conditions
Play Button
Study of Phagolysosome Biogenesis in Live Macrophages
Authors: Marc Bronietzki, Bahram Kasmapour, Maximiliano Gabriel Gutierrez.
Institutions: Helmholtz Centre for Infection Research, National Institute for Medical Research.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.
Immunology, Issue 85, Lysosome, Phagosome, phagolysosome, live-cell imaging, phagocytes, macrophages
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Generation and Purification of Human INO80 Chromatin Remodeling Complexes and Subcomplexes
Authors: Lu Chen, Soon-Keat Ooi, Ronald C. Conaway, Joan W. Conaway.
Institutions: Stowers Institute for Medical Research, Kansas University Medical Center.
INO80 chromatin remodeling complexes regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Human INO80 complexes consist of 14 protein subunits including Ino80, a SNF2-like ATPase, which serves both as the catalytic subunit and the scaffold for assembly of the complexes. Functions of the other subunits and the mechanisms by which they contribute to the INO80 complex's chromatin remodeling activity remain poorly understood, in part due to the challenge of generating INO80 subassemblies in human cells or heterologous expression systems. This JOVE protocol describes a procedure that allows purification of human INO80 chromatin remodeling subcomplexes that are lacking a subunit or a subset of subunits. N-terminally FLAG epitope tagged Ino80 cDNA are stably introduced into human embryonic kidney (HEK) 293 cell lines using Flp-mediated recombination. In the event that a subset of subunits of the INO80 complex is to be deleted, one expresses instead mutant Ino80 proteins that lack the platform needed for assembly of those subunits. In the event an individual subunit is to be depleted, one transfects siRNAs targeting this subunit into an HEK 293 cell line stably expressing FLAG tagged Ino80 ATPase. Nuclear extracts are prepared, and FLAG immunoprecipitation is performed to enrich protein fractions containing Ino80 derivatives. The compositions of purified INO80 subcomplexes can then be analyzed using methods such as immunoblotting, silver staining, and mass spectrometry. The INO80 and INO80 subcomplexes generated according to this protocol can be further analyzed using various biochemical assays, which are described in the accompanying JOVE protocol. The methods described here can be adapted for studies of the structural and functional properties of any mammalian multi-subunit chromatin remodeling and modifying complexes.
Biochemistry, Issue 92, chromatin remodeling, INO80, SNF2 family ATPase, structure-function, enzyme purification
Play Button
In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
Authors: Alberto Natali, Laura M. Roy, Roberta Croce.
Institutions: VU University Amsterdam.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory, and examples describing applications of the method are provided.
Biochemistry, Issue 92, Reconstitution, Photosynthesis, Chlorophyll, Carotenoids, Light Harvesting Protein, Chlamydomonas reinhardtii, Arabidopsis thaliana
Play Button
Enhanced Northern Blot Detection of Small RNA Species in Drosophila Melanogaster
Authors: Pietro Laneve, Angela Giangrande.
Institutions: Institut de Génétique et de Biologie Moléculaire et Cellulaire, Istituto Italiano di Tecnologia.
The last decades have witnessed the explosion of scientific interest around gene expression control mechanisms at the RNA level. This branch of molecular biology has been greatly fueled by the discovery of noncoding RNAs as major players in post-transcriptional regulation. Such a revolutionary perspective has been accompanied and triggered by the development of powerful technologies for profiling short RNAs expression, both at the high-throughput level (genome-wide identification) or as single-candidate analysis (steady state accumulation of specific species). Although several state-of-art strategies are currently available for dosing or visualizing such fleeing molecules, Northern Blot assay remains the eligible approach in molecular biology for immediate and accurate evaluation of RNA expression. It represents a first step toward the application of more sophisticated, costly technologies and, in many cases, remains a preferential method to easily gain insights into RNA biology. Here we overview an efficient protocol (Enhanced Northern Blot) for detecting weakly expressed microRNAs (or other small regulatory RNA species) from Drosophila melanogaster whole embryos, manually dissected larval/adult tissues or in vitro cultured cells. A very limited amount of RNA is required and the use of material from flow cytometry-isolated cells can be also envisaged.
Molecular Biology, Issue 90, Northern blotting, Noncoding RNAs, microRNAs, rasiRNA, Gene expression, Gcm/Glide, Drosophila melanogaster
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
Play Button
Using SCOPE to Identify Potential Regulatory Motifs in Coregulated Genes
Authors: Viktor Martyanov, Robert H. Gross.
Institutions: Dartmouth College.
SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference1. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data1. In this article, we utilize a web version of SCOPE2 to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs3,4 and has been used in other studies5-8. The three algorithms that comprise SCOPE are BEAM9, which finds non-degenerate motifs (ACCGGT), PRISM10, which finds degenerate motifs (ASCGWT), and SPACER11, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from a file. The output from SCOPE contains a list of all identified motifs with their scores, number of occurrences, fraction of genes containing the motif, and the algorithm used to identify the motif. For each motif, result details include a consensus representation of the motif, a sequence logo, a position weight matrix, and a list of instances for every motif occurrence (with exact positions and "strand" indicated). Results are returned in a browser window and also optionally by email. Previous papers describe the SCOPE algorithms in detail1,2,9-11.
Genetics, Issue 51, gene regulation, computational biology, algorithm, promoter sequence motif
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.