JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Motor planning in chronic upper-limb hemiparesis: evidence from movement-related potentials.
PLoS ONE
Chronic hemiplegia is a common long-term consequence of stroke, and subsequent motor recovery is often incomplete. Neurophysiological studies have focused on motor execution deficits in relatively high functioning patients. Much less is known about the influence exerted by processes related to motor preparation, particularly in patients with poor motor recovery.
ABSTRACT
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
22 Related JoVE Articles!
Play Button
Compensatory Limb Use and Behavioral Assessment of Motor Skill Learning Following Sensorimotor Cortex Injury in a Mouse Model of Ischemic Stroke
Authors: Abigail L. Kerr, Kelly A. Tennant.
Institutions: Illinois Wesleyan University, University of Victoria.
Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models.
Behavior, Issue 89, Upper extremity impairment, Murine model, Rehabilitation, Reaching, Non-paretic limb training, Good limb training, Less-affected limb training, Learned non-use, Pasta matrix reaching task
51602
Play Button
Functional Near Infrared Spectroscopy of the Sensory and Motor Brain Regions with Simultaneous Kinematic and EMG Monitoring During Motor Tasks
Authors: Theresa Sukal-Moulton, Ana Carolina de Campos, Christopher J. Stanley, Diane L. Damiano.
Institutions: National Institutes of Health.
There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions.
Behavior, Issue 94, functional near infrared spectroscopy, fNIRS, brain activity, gait, motor tasks, cerebral palsy, coordination
52391
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
50418
Play Button
Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding
Authors: Thomas C. Bulea, Atilla Kilicarslan, Recep Ozdemir, William H. Paloski, Jose L. Contreras-Vidal.
Institutions: National Institutes of Health, University of Houston, University of Houston, University of Houston, University of Houston.
Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.
Behavior, Issue 77, Neuroscience, Neurobiology, Medicine, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Electroencephalography, EEG, Electromyography, EMG, electroencephalograph, gait, brain-computer interface, brain machine interface, neural decoding, over-ground walking, robotic gait, brain, imaging, clinical techniques
50602
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
51050
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
51077
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Stimulating the Lip Motor Cortex with Transcranial Magnetic Stimulation
Authors: Riikka Möttönen, Jack Rogers, Kate E. Watkins.
Institutions: University of Oxford.
Transcranial magnetic stimulation (TMS) has proven to be a useful tool in investigating the role of the articulatory motor cortex in speech perception. Researchers have used single-pulse and repetitive TMS to stimulate the lip representation in the motor cortex. The excitability of the lip motor representation can be investigated by applying single TMS pulses over this cortical area and recording TMS-induced motor evoked potentials (MEPs) via electrodes attached to the lip muscles (electromyography; EMG). Larger MEPs reflect increased cortical excitability. Studies have shown that excitability increases during listening to speech as well as during viewing speech-related movements. TMS can be used also to disrupt the lip motor representation. A 15-min train of low-frequency sub-threshold repetitive stimulation has been shown to suppress motor excitability for a further 15-20 min. This TMS-induced disruption of the motor lip representation impairs subsequent performance in demanding speech perception tasks and modulates auditory-cortex responses to speech sounds. These findings are consistent with the suggestion that the motor cortex contributes to speech perception. This article describes how to localize the lip representation in the motor cortex and how to define the appropriate stimulation intensity for carrying out both single-pulse and repetitive TMS experiments.
Behavior, Issue 88, electromyography, motor cortex, motor evoked potential, motor excitability, speech, repetitive TMS, rTMS, virtual lesion, transcranial magnetic stimulation
51665
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
The Swimmeret System of Crayfish: A Practical Guide for the Dissection of the Nerve Cord and Extracellular Recordings of the Motor Pattern
Authors: Henriette A. Seichter, Felix Blumenthal, Carmen R. Smarandache-Wellmann.
Institutions: University of Cologne.
Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity 1-3. The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations 4. One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo 1. The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students’ practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish’s abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system. Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level.
Neurobiology, Issue 93, crustacean, dissection, extracellular recording, fictive locomotion, motor neurons, locomotion
52109
Play Button
Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
Authors: Mauricio F. Villamar, Magdalena Sarah Volz, Marom Bikson, Abhishek Datta, Alexandre F. DaSilva, Felipe Fregni.
Institutions: Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Pontifical Catholic University of Ecuador, Charité University Medicine Berlin, The City College of The City University of New York, University of Michigan.
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes. Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets.
Medicine, Issue 77, Neurobiology, Neuroscience, Physiology, Anatomy, Biomedical Engineering, Biophysics, Neurophysiology, Nervous System Diseases, Diagnosis, Therapeutics, Anesthesia and Analgesia, Investigative Techniques, Equipment and Supplies, Mental Disorders, Transcranial direct current stimulation, tDCS, High-definition transcranial direct current stimulation, HD-tDCS, Electrical brain stimulation, Transcranial electrical stimulation (tES), Noninvasive Brain Stimulation, Neuromodulation, non-invasive, brain, stimulation, clinical techniques
50309
Play Button
Utilizing Repetitive Transcranial Magnetic Stimulation to Improve Language Function in Stroke Patients with Chronic Non-fluent Aphasia
Authors: Gabriella Garcia, Catherine Norise, Olufunsho Faseyitan, Margaret A. Naeser, Roy H. Hamilton.
Institutions: University of Pennsylvania , University of Pennsylvania , Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston University School of Medicine.
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing.
Medicine, Issue 77, Neurobiology, Neuroscience, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Neurology, Stroke, Aphasia, Transcranial Magnetic Stimulation, TMS, language, neurorehabilitation, optimal site-finding, functional magnetic resonance imaging, fMRI, brain, stimulation, imaging, clinical techniques, clinical applications
50228
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
50189
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
3439
Play Button
Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
Authors: David A. Goss, Richard L. Hoffman, Brian C. Clark.
Institutions: Ohio University.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
Medicine, Issue 59, neuroscience, muscle, electromyography, physiology, TMS, strength, motor control. sarcopenia, dynapenia, lumbar
3387
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Institutions: University of Lethbridge.
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
Neuroscience, Issue 18, rat skilled reaching, rat reaching scale, rat, rat movement element rating scale, reaching elements
816
Play Button
The Ladder Rung Walking Task: A Scoring System and its Practical Application.
Authors: Gerlinde A. Metz, Ian Q. Whishaw.
Institutions: University of Lethbridge.
Progress in the development of animal models for/stroke, spinal cord injury, and other neurodegenerative disease requires tests of high sensitivity to elaborate distinct aspects of motor function and to determine even subtle loss of movement capacity. To enhance efficacy and resolution of testing, tests should permit qualitative and quantitative measures of motor function and be sensitive to changes in performance during recovery periods. The present study describes a new task to assess skilled walking in the rat to measure both forelimb and hindlimb function at the same time. Animals are required to walk along a horizontal ladder on which the spacing of the rungs is variable and is periodically changed. Changes in rung spacing prevent animals from learning the absolute and relative location of the rungs and so minimize the ability of the animals to compensate for impairments through learning. In addition, changing the spacing between the rungs allows the test to be used repeatedly in long-term studies. Methods are described for both quantitative and qualitative description of both fore- and hindlimb performance, including limb placing, stepping, co-ordination. Furthermore, use of compensatory strategies is indicated by missteps or compensatory steps in response to another limb’s misplacement.
Neuroscience, Issue 28, rat, animal model of walking, skilled movement, ladder test, rung test, neuroscience
1204
Play Button
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Authors: Tinh N. Luong, Holly J. Carlisle, Amber Southwell, Paul H. Patterson.
Institutions: California Institute of Technology.
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Neuroscience, Issue 49, motor skills, coordination, balance beam test, mouse behavior
2376
Play Button
Coherence between Brain Cortical Function and Neurocognitive Performance during Changed Gravity Conditions
Authors: Vera Brümmer, Stefan Schneider, Tobias Vogt, Heiko Strüder, Heather Carnahan, Christopher D. Askew, Roland Csuhaj.
Institutions: German Sport University Cologne, University of Toronto, Queensland University of Technology, Gilching, Germany.
Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out - undoubtedly because the technical and methodological means have not been available -, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It can be assumed that the long-term redistribution of the blood volume and the associated increase in the supply of oxygen to the brain will lead to changes in the central nervous system that are also responsible for anaemic processes, and which can in turn reduce performance (De Santo et al. 2005), which means that they could be crucial for the success and safety of a mission (Genik et al. 2005, Ellis 2000). Depending on these results, it will be necessary to develop and employ extensive countermeasures. Initial results for the MARS500 study suggest that, in addition to their significance in the context of the cardiovascular and locomotor systems, sport and physical activity can play a part in improving neurocognitive parameters. Before this can be fully established, however, it seems necessary to learn more about the influence of changing gravity conditions on neurophysiological processes and associated neurocognitive impairment.
Neuroscience, Issue 51, EEG, NIRS, electrotomography, parabolic flight, weightlessness, imaging, cognitive performance
2670
Play Button
Behavioral Assessment of Manual Dexterity in Non-Human Primates
Authors: Eric Schmidlin, Mélanie Kaeser, Anne- Dominique Gindrat, Julie Savidan, Pauline Chatagny, Simon Badoud, Adjia Hamadjida, Marie-Laure Beaud, Thierry Wannier, Abderraouf Belhaj-Saif, Eric M. Rouiller.
Institutions: University of Fribourg.
The corticospinal (CS) tract is the anatomical support of the exquisite motor ability to skillfully manipulate small objects, a prerogative mainly of primates1. In case of lesion affecting the CS projection system at its origin (lesion of motor cortical areas) or along its trajectory (cervical cord lesion), there is a dramatic loss of manual dexterity (hand paralysis), as seen in some tetraplegic or hemiplegic patients. Although there is some spontaneous functional recovery after such lesion, it remains very limited in the adult. Various therapeutic strategies are presently proposed (e.g. cell therapy, neutralization of inhibitory axonal growth molecules, application of growth factors, etc), which are mostly developed in rodents. However, before clinical application, it is often recommended to test the feasibility, efficacy, and security of the treatment in non-human primates. This is especially true when the goal is to restore manual dexterity after a lesion of the central nervous system, as the organization of the motor system of rodents is different from that of primates1,2. Macaque monkeys are illustrated here as a suitable behavioral model to quantify manual dexterity in primates, to reflect the deficits resulting from lesion of the motor cortex or cervical cord for instance, measure the extent of spontaneous functional recovery and, when a treatment is applied, evaluate how much it can enhance the functional recovery. The behavioral assessment of manual dexterity is based on four distinct, complementary, reach and grasp manual tasks (use of precision grip to grasp pellets), requiring an initial training of adult macaque monkeys. The preparation of the animals is demonstrated, as well as the positioning with respect to the behavioral set-up. The performance of a typical monkey is illustrated for each task. The collection and analysis of relevant parameters reflecting precise hand manipulation, as well as the control of force, are explained and demonstrated with representative results. These data are placed then in a broader context, showing how the behavioral data can be exploited to investigate the impact of a spinal cord lesion or of a lesion of the motor cortex and to what extent a treatment may enhance the spontaneous functional recovery, by comparing different groups of monkeys (treated versus sham treated for instance). Advantages and limitations of the behavioral tests are discussed. The present behavioral approach is in line with previous reports emphasizing the pertinence of the non-human primate model in the context of nervous system diseases2,3.
Neuroscience, Issue 57, monkey, hand, spinal cord lesion, cerebral cortex lesion, functional recovery
3258
Play Button
ALS - Motor Neuron Disease: Mechanism and Development of New Therapies
Authors: Jeffrey D. Rothstein.
Institutions: Johns Hopkins University.
Medicine, Issue 6, Translational Research, Neuroscience, ALS, stem cells, brain, neuron, upper motor neuron, transplantation
245
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.