JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The effects of ecstasy (MDMA) on brain serotonin transporters are dependent on age-of-first exposure in recreational users and animals.
Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin) exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure.
Authors: Anne Klomp, Jordi L. Tremoleda, Anouk Schrantee, Willy Gsell, Liesbeth Reneman.
Published: 04-25-2012
Pharmacological MRI (phMRI) is a new and promising method to study the effects of substances on brain function that can ultimately be used to unravel underlying neurobiological mechanisms behind drug action and neurotransmitter-related disorders, such as depression and ADHD. Like most of the imaging methods (PET, SPECT, CT) it represents a progress in the investigation of brain disorders and the related function of neurotransmitter pathways in a non-invasive way with respect of the overall neuronal connectivity. Moreover it also provides the ideal tool for translation to clinical investigations. MRI, while still behind in molecular imaging strategies compared to PET and SPECT, has the great advantage to have a high spatial resolution and no need for the injection of a contrast-agent or radio-labeled molecules, thereby avoiding the repetitive exposure to ionizing radiations. Functional MRI (fMRI) is extensively used in research and clinical setting, where it is generally combined with a psycho-motor task. phMRI is an adaptation of fMRI enabling the investigation of a specific neurotransmitter system, such as serotonin (5-HT), under physiological or pathological conditions following activation via administration of a specific challenging drug. The aim of the method described here is to assess brain 5-HT function in free-breathing animals. By challenging the 5-HT system while simultaneously acquiring functional MR images over time, the response of the brain to this challenge can be visualized. Several studies in animals have already demonstrated that drug-induced increases in extracellular levels of e.g. 5-HT (releasing agents, selective re-uptake blockers, etc) evoke region-specific changes in blood oxygenation level dependent (BOLD) MRI signals (signal due to a change of the oxygenated/deoxygenated hemoglobin levels occurring during brain activation through an increase of the blood supply to supply the oxygen and glucose to the demanding neurons) providing an index of neurotransmitter function. It has also been shown that these effects can be reversed by treatments that decrease 5-HT availability16,13,18,7. In adult rats, BOLD signal changes following acute SSRI administration have been described in several 5-HT related brain regions, i.e. cortical areas, hippocampus, hypothalamus and thalamus9,16,15. Stimulation of the 5-HT system and its response to this challenge can be thus used as a measure of its function in both animals and humans2,11.
21 Related JoVE Articles!
Play Button
Functional Analysis of the Larval Feeding Circuit in Drosophila
Authors: Parag K. Bhatt, Wendi S. Neckameyer.
Institutions: Saint Louis University School of Medicine.
The serotonergic feeding circuit in Drosophila melanogaster larvae can be used to investigate neuronal substrates of critical importance during the development of the circuit. Using the functional output of the circuit, feeding, changes in the neuronal architecture of the stomatogastric system can be visualized. Feeding behavior can be recorded by observing the rate of retraction of the mouth hooks, which receive innervation from the brain. Locomotor behavior is used as a physiological control for feeding, since larvae use their mouth hooks to traverse across an agar substrate. Changes in feeding behavior can be correlated with the axonal architecture of the neurites innervating the gut. Using immunohistochemistry it is possible to visualize and quantitate these changes. Improper handling of the larvae during behavior paradigms can alter data as they are very sensitive to manipulations. Proper imaging of the neurite architecture innervating the gut is critical for precise quantitation of number and size of varicosities as well as the extent of branch nodes. Analysis of most circuits allow only for visualization of neurite architecture or behavioral effects; however, this model allows one to correlate the functional output of the circuit with the impairments in neuronal architecture.
Neuroscience, Issue 81, Neural Pathways, Drosophila, Microscopy, Neuroimaging, Behavior, Behavior Mechanisms, Dopamine, Immunohistochemistry, neurite, proventriculus, serotonin, varicosities, animal model
Play Button
Experimental Methods for Testing the Effects of Neurotrophic Peptide, ADNF-9, Against Alcohol-induced Apoptosis during Pregnancy in C57BL/6 Mice
Authors: Youssef Sari.
Institutions: University of Toledo .
Experimental designs for investigating the effects of prenatal alcohol exposure during early embryonic stages in fetal brain growth are challenging. This is mostly due to the difficulty of microdissection of fetal brains and their sectioning for determination of apoptotic cells caused by prenatal exposure to alcohol. The experiments described here provide visualized techniques from mice breeding to the identification of cell death in fetal brain tissue. This study used C57BL/6 mice as the animal model for studying fetal alcohol exposure and the role of trophic peptide against alcohol-induced apoptosis. The breeding consists of a 2-hr matting window to determine the exact stage of embryonic age. An established fetal alcohol exposure model has been used in this study to determine the effects of prenatal alcohol exposure in fetal brains. This involves free access to alcohol or pair-fed liquid diets as the sole source of nutrients for the pregnant mice. The techniques involving dissection of fetuses and microdissection of fetal brains are described carefully, since the latter can be challenging. Microdissection requires a stereomicroscope and ultra-fine forceps. Step-by-step procedures for dissecting the fetal brains are provided visually. The fetal brains are dissected from the base of the primordium olfactory bulb to the base of the metencephalon. For investigating apoptosis, fetal brains are first embedded in gelatin using a peel-away mold to facilitate their sectioning with a vibratome apparatus. Fetal brains embedded and fixed in paraformaldehyde are easily sectioned, and the free floating sections can be mounted in superfrost plus slides for determination of apoptosis or cell death. TUNEL (TdT-mediated dUTP Nick End Labeling; TdT: terminal deoxynucleotidyl transferase) assay has been used to identify cell death or apoptotic cells. It is noteworthy that apoptosis and cell-mediated cytotoxicity are characterized by DNA fragmentation. Thus, the visualized TUNEL-positive cells are indicative of cell death or apoptotic cells. The experimental designs here provide information about the use of an established liquid diet for studying the effects of alcohol and the role of neurotrophic peptides during pregnancy in fetal brains. This involves breeding and feeding pregnant mice, microdissecting fetal brains, and determining apoptosis. Together, these visual and textual techniques might be a source for investigating prenatal exposure of harmful agents in fetal brains.
Neuroscience, Issue 74, Developmental Biology, Neurobiology, Anatomy, Physiology, Molecular Biology, Cellular Biology, Biochemsitry, Biomedical Engineering, Pharmacology, Embryonic Structures, Nervous System, Nervous System Diseases, Neurotrophic Peptides, TUNEL, Apoptosis, Fetal Alcohol Syndrome, Neuroprotection, fetal brain sections, transgenic mice, animal model, assay
Play Button
Gastrointestinal Motility Monitor (GIMM)
Authors: Jill M. Hoffman, Elice M. Brooks, Gary M. Mawe.
Institutions: The University of Vermont.
The Gastrointestinal Motility Monitor (GIMM; Catamount Research and Development; St. Albans, VT) is an in vitro system that monitors propulsive motility in isolated segments of guinea pig distal colon. The complete system consists of a computer, video camera, illuminated organ bath, peristaltic and heated water bath circulating pumps, and custom GIMM software to record and analyze data. Compared with traditional methods of monitoring colonic peristalsis, the GIMM system allows for continuous, quantitative evaluation of motility. The guinea pig distal colon is bathed in warmed, oxygenated Krebs solution, and fecal pellets inserted in the oral end are propelled along the segment of colon at a rate of about 2 mm/sec. Movies of the fecal pellet proceeding along the segment are captured, and the GIMM software can be used track the progress of the fecal pellet. Rates of propulsive motility can be obtained for the entire segment or for any particular region of interest. In addition to analysis of bolus-induced motility patterns, spatiotemporal maps can be constructed from captured video segments to assess spontaneous motor activity patterns. Applications of this system include pharmacological evaluation of the effects of receptor agonists and antagonists on propulsive motility, as well as assessment of changes that result from pathophysiological conditions, such as inflammation or stress. The guinea pig distal colon propulsive motility assay, using the GIMM system, is straightforward and simple to learn, and it provides a reliable and reproducible method of assessing propulsive motility.
Medicine, Issue 46, peristalsis, colon, in vitro, video tracking, video analysis, GIMM, guinea pig,
Play Button
A Method of Nodose Ganglia Injection in Sprague-Dawley Rat
Authors: Michael W. Calik, Miodrag Radulovacki, David W. Carley.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.
Neuroscience, Issue 93, neuroscience, nodose ganglia, vagus nerve, EMG, serotonin, apnea, genioglossus, cannabinoids
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Authors: Hirotaka Shoji, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Behavior, Issue 85, Fear, Learning, Memory, ImageFZ program, Mouse, contextual fear, cued fear
Play Button
Generation of Topically Transgenic Rats by In utero Electroporation and In vivo Bioluminescence Screening
Authors: Sandra Vomund, Tamar Sapir, Orly Reiner, Maria A. de Souza Silva, Carsten Korth.
Institutions: Medical School Düsseldorf, Weizmann Institute for Science, University of Düsseldorf.
In utero electroporation (IUE) is a technique which allows genetic modification of cells in the brain for investigating neuronal development. So far, the use of IUE for investigating behavior or neuropathology in the adult brain has been limited by insufficient methods for monitoring of IUE transfection success by non-invasive techniques in postnatal animals. For the present study, E16 rats were used for IUE. After intraventricular injection of the nucleic acids into the embryos, positioning of the tweezer electrodes was critical for targeting either the developing cortex or the hippocampus. Ventricular co-injection and electroporation of a luciferase gene allowed monitoring of the transfected cells postnatally after intraperitoneal luciferin injection in the anesthetized live P7 pup by in vivo bioluminescence, using an IVIS Spectrum device with 3D quantification software. Area definition by bioluminescence could clearly differentiate between cortical and hippocampal electroporations and detect a signal longitudinally over time up to 5 weeks after birth. This imaging technique allowed us to select pups with a sufficient number of transfected cells assumed necessary for triggering biological effects and, subsequently, to perform behavioral investigations at 3 month of age. As an example, this study demonstrates that IUE with the human full length DISC1 gene into the rat cortex led to amphetamine hypersensitivity. Co-transfected GFP could be detected in neurons by post mortem fluorescence microscopy in cryosections indicating gene expression present at ≥6 months after birth. We conclude that postnatal bioluminescence imaging allows evaluating the success of transient transfections with IUE in rats. Investigations on the influence of topical gene manipulations during neurodevelopment on the adult brain and its connectivity are greatly facilitated. For many scientific questions, this technique can supplement or even replace the use of transgenic rats and provide a novel technology for behavioral neuroscience.
Neuroscience, Issue 79, Hippocampus, Memory, Schizophrenia, In utero electroporation, in vivo bioluminescence imaging, Luciferase, Disrupted-in-schizophrenia-1 (DISC1)
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
ELIME (Enzyme Linked Immuno Magnetic Electrochemical) Method for Mycotoxin Detection
Authors: Daniela Romanazzo, Francesco Ricci, Silvia Vesco, Silvia Piermarini, Giulia Volpe, Danila Moscone, Giuseppe Palleschi.
Institutions: University of Rome, Tor Vergata.
Immunoassays are a valid alternative to the more expensive and time consuming quantitative HPLC or GC1, 2 methods for the screening detection of hazardous mycotoxins in food commodities. In this protocol we show how to fabricate and interrogate an electrochemical competitive Enzyme linked immunomagnetic assay based on the use of magnetic beads as solid support for the immunochemical chain3 and screen printed electrodes as sensing platform. Our method aims to determine the total amount of HT-2 and T-2 toxins, mycotoxins belonging to the trichothecenes family and of great concern for human health4. The use of an antibody clone with a cross reactivity of 100% towards HT-2 and T-2 allows to simultaneously detect both toxins with similar sensitivity5. The first step of our assay is the coating step where we immobilize HT2-KLH conjugate toxin on the surface of magnetic beads. After a blocking step, necessary to avoid non-specific absorptions, the addition of a monoclonal antibody allows the competition between immobilized HT-2 and free HT-2 or T-2 present in the sample or dissolved in a standard solution. At the end of the competition step, the amount of monoclonal antibody linked to the immobilized HT-2 will be inversely proportional to the amount of toxin in the sample solution. A secondary antibody labeled with alkaline phosphatase (AP) is used to reveal the binding between the specific antibody and the immobilized HT-2. The final measurement step is performed by dropping an aliquot of magnetic bead suspension, corresponding to a specific sample/standard solution, on the surface of a screen-printed working electrode; magnetic beads are immobilized and concentrated by means of a magnet placed precisely under the screen-printed electrode. After two minutes of incubation between magnetic beads and a substrate for AP, the enzymatic product is detected by Differential Pulse Voltammetry (DPV) using a portable instrument (PalmSens) also able to initiate automatically eight measurements within an interval of few seconds.
Biochemistry, Issue 32, Immunosensors, assay, antibody, magnetic bead, electrochemical, screen printed electrodes, array, toxin, food
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Real-Time Impedance-based Cell Analyzer as a Tool to Delineate Molecular Pathways Involved in Neurotoxicity and Neuroprotection in a Neuronal Cell Line
Authors: Zoya Marinova, Susanne Walitza, Edna Grünblatt.
Institutions: University of Zürich.
Many brain-related disorders have neuronal cell death involved in their pathophysiology. Improved in vitro models to study neuroprotective or neurotoxic effects of drugs and downstream pathways involved would help gain insight into the molecular mechanisms of neuroprotection/neurotoxicity and could potentially facilitate drug development. However, many existing in vitro toxicity assays have major limitations – most assess neurotoxicity and neuroprotection at a single time point, not allowing to observe the time-course and kinetics of the effect. Furthermore, the opportunity to collect information about downstream signaling pathways involved in neuroprotection in real-time would be of great importance. In the current protocol we describe the use of a real-time impedance-based cell analyzer to determine neuroprotective effects of serotonin 2A (5-HT2A) receptor agonists in a neuronal cell line under label-free and real-time conditions using impedance measurements. Furthermore, we demonstrate that inhibitors of second messenger pathways can be used to delineate downstream molecules involved in the neuroprotective effect. We also describe the utility of this technique to determine whether an effect on cell proliferation contributes to an observed neuroprotective effect. The system utilizes special microelectronic plates referred to as E-Plates which contain alternating gold microelectrode arrays on the bottom surface of the wells, serving as cell sensors. The impedance readout is modified by the number of adherent cells, cell viability, morphology, and adhesion. A dimensionless parameter called Cell Index is derived from the electrical impedance measurements and is used to represent the cell status. Overall, the real-time impedance-based cell analyzer allows for real-time, label-free assessment of neuroprotection and neurotoxicity, and the evaluation of second messenger pathways involvement, contributing to more detailed and high-throughput assessment of potential neuroprotective compounds in vitro, for selecting therapeutic candidates.
Neuroscience, Issue 90, neuroscience, neuronal cell line, neurotoxicity, neuroprotection, real-time impedance-based cell analyzer, second messenger pathways, serotonin
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat
Authors: Ian Q. Whishaw, Boguslaw P. Gorny.
Institutions: Canadian Centre for Behavioural Neuroscience, University of Lethbridge.
Piloting and dead reckoning navigation strategies use very different cue constellations and computational processes (Darwin, 1873; Barlow, 1964; O’Keefe and Nadel, 1978; Mittelstaedt and Mittelstaedt, 1980; Landeau et al., 1984; Etienne, 1987; Gallistel, 1990; Maurer and Séguinot, 1995). Piloting requires the use of the relationships between relatively stable external (visual, olfactory, auditory) cues, whereas dead reckoning requires the integration of cues generated by self-movement. Animals obtain self-movement information from vestibular receptors, and possibly muscle and joint receptors, and efference copy of commands that generate movement. An animal may also use the flows of visual, auditory, and olfactory stimuli caused by its movements. Using a piloting strategy an animal can use geometrical calculations to determine directions and distances to places in its environment, whereas using an dead reckoning strategy it can integrate cues generated by its previous movements to return to a just left location. Dead reckoning is colloquially called "sense of direction" and "sense of distance." Although there is considerable evidence that the hippocampus is involved in piloting (O’Keefe and Nadel, 1978; O’Keefe and Speakman, 1987), there is also evidence from behavioral (Whishaw et al., 1997; Whishaw and Maaswinkel, 1998; Maaswinkel and Whishaw, 1999), modeling (Samsonovich and McNaughton, 1997), and electrophysiological (O’Mare et al., 1994; Sharp et al., 1995; Taube and Burton, 1995; Blair and Sharp, 1996; McNaughton et al., 1996; Wiener, 1996; Golob and Taube, 1997) studies that the hippocampal formation is involved in dead reckoning. The relative contribution of the hippocampus to the two forms of navigation is still uncertain, however. Ordinarily, it is difficult to be certain that an animal is using a piloting versus a dead reckoning strategy because animals are very flexible in their use of strategies and cues (Etienne et al., 1996; Dudchenko et al., 1997; Martin et al., 1997; Maaswinkel and Whishaw, 1999). The objective of the present video demonstrations was to solve the problem of cue specification in order to examine the relative contribution of the hippocampus in the use of these strategies. The rats were trained in a new task in which they followed linear or polygon scented trails to obtain a large food pellet hidden on an open field. Because rats have a proclivity to carry the food back to the refuge, accuracy and the cues used to return to the home base were dependent variables (Whishaw and Tomie, 1997). To force an animal to use a a dead reckoning strategy to reach its refuge with the food, the rats were tested when blindfolded or under infrared light, a spectral wavelength in which they cannot see, and in some experiments the scent trail was additionally removed once an animal reached the food. To examine the relative contribution of the hippocampus, fimbria–fornix (FF) lesions, which disrupt information flow in the hippocampal formation (Bland, 1986), impair memory (Gaffan and Gaffan, 1991), and produce spatial deficits (Whishaw and Jarrard, 1995), were used.
Neuroscience, Issue 26, Dead reckoning, fimbria-fornix, hippocampus, odor tracking, path integration, spatial learning, spatial navigation, piloting, rat, Canadian Centre for Behavioural Neuroscience
Play Button
A Simple Way to Measure Ethanol Sensitivity in Flies
Authors: Thomas Maples, Adrian Rothenfluh.
Institutions: University of Texas Southwestern Medical Center.
Low doses of ethanol cause flies to become hyperactive, while high doses are sedating. The sensitivity to ethanol-induced sedation of a given fly strain is correlated with that strain s ethanol preference, and therefore sedation is a highly relevant measure to study the genetics of alcohol responses and drinking. We demonstrate a simple way to expose flies to ethanol and measure its intoxicating effects. The assay we describe can determine acute sensitivity, as well as ethanol tolerance induced by repeat exposure. It does not require a technically involved setup, and can therefore be applied in any laboratory with basic fly culture tools.
Neuroscience, Issue 48, Drosophila, behavior, alcohol, addiction
Play Button
Single Cell Electroporation in vivo within the Intact Developing Brain
Authors: D. Sesath Hewapathirane, Kurt Haas.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
Single-cell electroporation (SCE) is a specialized technique allowing the delivery of DNA or other macromolecules into individual cells within intact tissue, including in vivo preparations. The distinct advantage of this technique is that experimental manipulations may be performed on individual cells while leaving the surrounding tissue unaltered, thereby distinguishing cell-autonomous effects from those resulting from global treatments. When combined with advanced in vivo imaging techniques, SCE of fluorescent markers permits direct visualization of cellular morphology, cell growth, and intracellular events over timescales ranging from seconds to days. While this technique is used in a variety of in vivo and ex vivo preparations, we have optimized this technique for use in Xenopus laevis tadpoles. In this video article, we detail the procedure for SCE of a fluorescent dye or plasmid DNA into neurons within the intact brain of the albino Xenopus tadpole. We also discuss methods to optimize yield, and show examples of live two-photon fluorescence imaging of neurons fluorescently labeled by SCE.
Neuroscience, Issue 17, electroporation, gene delivery, transfection, fluorescence labeling, neuronal imaging, micropipette
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.