JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Emotional and social mind training: a randomised controlled trial of a new group-based treatment for bulimia nervosa.
There is a need to improve treatment for individuals with bulimic disorders. It was hypothesised that a focus in treatment on broader emotional and social/interpersonal issues underlying eating disorders would increase treatment efficacy. This study tested a novel treatment based on the above hypothesis, an Emotional and Social Mind Training Group (ESM), against a Cognitive Behavioural Therapy Group (CBT) treatment.
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Published: 06-10-2013
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
24 Related JoVE Articles!
Play Button
Psychophysiological Stress Assessment Using Biofeedback
Authors: Inna Khazan.
Institutions: Cambridge Health Alliance, Harvard Medical School.
In the last half century, research in biofeedback has shown the extent to which the human mind can influence the functioning of the autonomic nervous system, previously thought to be outside of conscious control. By letting people observe signals from their own bodies, biofeedback enables them to develop greater awareness of their physiological and psychological reactions, such as stress, and to learn to modify these reactions. Biofeedback practitioners can facilitate this process by assessing people s reactions to mildly stressful events and formulating a biofeedback-based treatment plan. During stress assessment the practitioner first records a baseline for physiological readings, and then presents the client with several mild stressors, such as a cognitive, physical and emotional stressor. Variety of stressors is presented in order to determine a person's stimulus-response specificity, or differences in each person's reaction to qualitatively different stimuli. This video will demonstrate the process of psychophysiological stress assessment using biofeedback and present general guidelines for treatment planning.
Neuroscience, Issue 29, Stress, biofeedback, psychophysiological, assessment
Play Button
Targeted Training of Ultrasonic Vocalizations in Aged and Parkinsonian Rats
Authors: Aaron M. Johnson, Emerald J. Doll, Laura M. Grant, Lauren Ringel, Jaime N. Shier, Michelle R. Ciucci.
Institutions: University of Wisconsin, University of Wisconsin.
Voice deficits are a common complication of both Parkinson disease (PD) and aging; they can significantly diminish quality of life by impacting communication abilities. 1, 2 Targeted training (speech/voice therapy) can improve specific voice deficits,3, 4 although the underlying mechanisms of behavioral interventions are not well understood. Systematic investigation of voice deficits and therapy should consider many factors that are difficult to control in humans, such as age, home environment, age post-onset of disease, severity of disease, and medications. The method presented here uses an animal model of vocalization that allows for systematic study of how underlying sensorimotor mechanisms change with targeted voice training. The ultrasonic recording and analysis procedures outlined in this protocol are applicable to any investigation of rodent ultrasonic vocalizations. The ultrasonic vocalizations of rodents are emerging as a valuable model to investigate the neural substrates of behavior.5-8 Both rodent and human vocalizations carry semiotic value and are produced by modifying an egressive airflow with a laryngeal constriction.9, 10 Thus, rodent vocalizations may be a useful model to study voice deficits in a sensorimotor context. Further, rat models allow us to study the neurobiological underpinnings of recovery from deficits with targeted training. To model PD we use Long-Evans rats (Charles River Laboratories International, Inc.) and induce parkinsonism by a unilateral infusion of 7 μg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle which causes moderate to severe degeneration of presynaptic striatal neurons (for details see Ciucci, 2010).11, 12 For our aging model we use the Fischer 344/Brown Norway F1 (National Institute on Aging). Our primary method for eliciting vocalizations is to expose sexually-experienced male rats to sexually receptive female rats. When the male becomes interested in the female, the female is removed and the male continues to vocalize. By rewarding complex vocalizations with food or water, both the number of complex vocalizations and the rate of vocalizations can be increased (Figure 1). An ultrasonic microphone mounted above the male's home cage records the vocalizations. Recording begins after the female rat is removed to isolate the male calls. Vocalizations can be viewed in real time for training or recorded and analyzed offline. By recording and acoustically analyzing vocalizations before and after vocal training, the effects of disease and restoration of normal function with training can be assessed. This model also allows us to relate the observed behavioral (vocal) improvements to changes in the brain and neuromuscular system.
Neuroscience, Issue 54, ultrasonic vocalization, rat, aging, Parkinson disease, exercise, 6-hydroxydopamine, voice disorders, voice therapy
Play Button
Assessment of Social Interaction Behaviors
Authors: Oksana Kaidanovich-Beilin, Tatiana Lipina, Igor Vukobradovic, John Roder, James R. Woodgett.
Institutions: Mount Sinai Hospital, Mount Sinai Hospital, University of Toronto, University of Toronto, University of Toronto.
Social interactions are a fundamental and adaptive component of the biology of numerous species. Social recognition is critical for the structure and stability of the networks and relationships that define societies. For animals, such as mice, recognition of conspecifics may be important for maintaining social hierarchy and for mate choice 1. A variety of neuropsychiatric disorders are characterized by disruptions in social behavior and social recognition, including depression, autism spectrum disorders, bipolar disorders, obsessive-compulsive disorders, and schizophrenia. Studies of humans as well as animal models (e.g., Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Rattus norvegicus) have identified genes involved in the regulation of social behavior 2. To assess sociability in animal models, several behavioral tests have been developed (reviewed in 3). Integrative research using animal models and appropriate tests for social behavior may lead to the development of improved treatments for social psychopathologies. The three-chamber paradigm test known as Crawley's sociability and preference for social novelty protocol has been successfully employed to study social affiliation and social memory in several inbred and mutant mouse lines (e.g. 4-7). The main principle of this test is based on the free choice by a subject mouse to spend time in any of three box's compartments during two experimental sessions, including indirect contact with one or two mice with which it is unfamiliar. To quantitate social tendencies of the experimental mouse, the main tasks are to measure a) the time spent with a novel conspecific and b) preference for a novel vs. a familiar conspecific. Thus, the experimental design of this test allows evaluation of two critical but distinguishable aspects of social behavior, such as social affiliation/motivation, as well as social memory and novelty. "Sociability" in this case is defined as propensity to spend time with another mouse, as compared to time spent alone in an identical but empty chamber 7. "Preference for social novelty" is defined as propensity to spend time with a previously unencountered mouse rather than with a familiar mouse 7. This test provides robust results, which then must be carefully analyzed, interpreted and supported/confirmed by alternative sociability tests. In addition to specific applications, Crawley's sociability test can be included as an important component of general behavioral screen of mutant mice.
Neuroscience, Issue 48, Mice, behavioral test, phenotyping, social interaction
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
Measuring Attentional Biases for Threat in Children and Adults
Authors: Vanessa LoBue.
Institutions: Rutgers University.
Investigators have long been interested in the human propensity for the rapid detection of threatening stimuli. However, until recently, research in this domain has focused almost exclusively on adult participants, completely ignoring the topic of threat detection over the course of development. One of the biggest reasons for the lack of developmental work in this area is likely the absence of a reliable paradigm that can measure perceptual biases for threat in children. To address this issue, we recently designed a modified visual search paradigm similar to the standard adult paradigm that is appropriate for studying threat detection in preschool-aged participants. Here we describe this new procedure. In the general paradigm, we present participants with matrices of color photographs, and ask them to find and touch a target on the screen. Latency to touch the target is recorded. Using a touch-screen monitor makes the procedure simple and easy, allowing us to collect data in participants ranging from 3 years of age to adults. Thus far, the paradigm has consistently shown that both adults and children detect threatening stimuli (e.g., snakes, spiders, angry/fearful faces) more quickly than neutral stimuli (e.g., flowers, mushrooms, happy/neutral faces). Altogether, this procedure provides an important new tool for researchers interested in studying the development of attentional biases for threat.
Behavior, Issue 92, Detection, threat, attention, attentional bias, anxiety, visual search
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging
Authors: Nicholas L. Balderston, Douglas H. Schultz, Sylvain Baillet, Fred J. Helmstetter.
Institutions: University of Wisconsin-Milwaukee, Montreal Neurological Institute, McGill University, Medical College of Wisconsin .
In trace fear conditioning a conditional stimulus (CS) predicts the occurrence of the unconditional stimulus (UCS), which is presented after a brief stimulus free period (trace interval)1. Because the CS and UCS do not co-occur temporally, the subject must maintain a representation of that CS during the trace interval. In humans, this type of learning requires awareness of the stimulus contingencies in order to bridge the trace interval2-4. However when a face is used as a CS, subjects can implicitly learn to fear the face even in the absence of explicit awareness*. This suggests that there may be additional neural mechanisms capable of maintaining certain types of "biologically-relevant" stimuli during a brief trace interval. Given that the amygdala is involved in trace conditioning, and is sensitive to faces, it is possible that this structure can maintain a representation of a face CS during a brief trace interval. It is challenging to understand how the brain can associate an unperceived face with an aversive outcome, even though the two stimuli are separated in time. Furthermore investigations of this phenomenon are made difficult by two specific challenges. First, it is difficult to manipulate the subject's awareness of the visual stimuli. One common way to manipulate visual awareness is to use backward masking. In backward masking, a target stimulus is briefly presented (< 30 msec) and immediately followed by a presentation of an overlapping masking stimulus5. The presentation of the mask renders the target invisible6-8. Second, masking requires very rapid and precise timing making it difficult to investigate neural responses evoked by masked stimuli using many common approaches. Blood-oxygenation level dependent (BOLD) responses resolve at a timescale too slow for this type of methodology, and real time recording techniques like electroencephalography (EEG) and magnetoencephalography (MEG) have difficulties recovering signal from deep sources. However, there have been recent advances in the methods used to localize the neural sources of the MEG signal9-11. By collecting high-resolution MRI images of the subject's brain, it is possible to create a source model based on individual neural anatomy. Using this model to "image" the sources of the MEG signal, it is possible to recover signal from deep subcortical structures, like the amygdala and the hippocampus*.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Medicine, Physiology, Anatomy, Psychology, Amygdala, Magnetoencephalography, Fear, awareness, masking, source imaging, conditional stimulus, unconditional stimulus, hippocampus, brain, magnetic resonance imaging, MRI, fMRI, imaging, clinical techniques
Play Button
Extinction Training During the Reconsolidation Window Prevents Recovery of Fear
Authors: Daniela Schiller, Candace M. Raio, Elizabeth A. Phelps.
Institutions: Mt. Sinai School of Medicine, New York University , New York University .
Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone1,2 . Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed3. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory4. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface3,4. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference5-9. This window of opportunity appears to open shortly after reactivation and close approximately 6hrs later5,11,16, although this may vary depending on the strength and age of the memory15. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates10,11. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies12-14. Our protocol addresses these challenges by offering an effective, yet non-invasive, behavioral manipulation that is safe for humans. By prompting fear memory retrieval prior to extinction, we essentially trigger the reconsolidation process, allowing new safety information (i.e., extinction) to be incorporated while the fear memory is still susceptible to interference. A recent study employing this behavioral manipulation in rats has successfully blocked fear memory using these temporal parameters11. Additional studies in humans have demonstrated that introducing new information after the retrieval of previously consolidated motor16, episodic17, or declarative18 memories leads to interference with the original memory trace14. We outline below a novel protocol used to block fear recovery in humans.
Neuroscience, Issue 66, Medicine, Psychology, Physiology, Fear conditioning, extinction, reconsolidation, emotional memory, spontaneous recovery, skin conductance response
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Combining Computer Game-Based Behavioural Experiments With High-Density EEG and Infrared Gaze Tracking
Authors: Keith J. Yoder, Matthew K. Belmonte.
Institutions: Cornell University, University of Chicago, Manesar, India.
Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor inhibition, a psychophysical motion coherence threshold task, the Embedded Figures Test (Witkin, 1950, 1954) and a theory-of-mind (Wimmer & Perner, 1983) task. The game software automatically registers game stimuli and subjects' actions and responses in a log file, and sends event codes to synchronise with physiological data recorders. Thus the game can be combined with physiological measures such as EEG or fMRI, and with moment-to-moment tracking of gaze. Gaze tracking can verify subjects' compliance with behavioural tasks (e.g. fixation) and overt attention to experimental stimuli, and also physiological arousal as reflected in pupil dilation (Bradley et al., 2008). At great enough sampling frequencies, gaze tracking may also help assess covert attention as reflected in microsaccades - eye movements that are too small to foveate a new object, but are as rapid in onset and have the same relationship between angular distance and peak velocity as do saccades that traverse greater distances. The distribution of directions of microsaccades correlates with the (otherwise) covert direction of attention (Hafed & Clark, 2002).
Neuroscience, Issue 46, High-density EEG, ERP, ICA, gaze tracking, computer game, ecological validity
Play Button
Measuring Neural and Behavioral Activity During Ongoing Computerized Social Interactions: An Examination of Event-Related Brain Potentials
Authors: Jason R. Themanson.
Institutions: Illinois Wesleyan University.
Social exclusion is a complex social phenomenon with powerful negative consequences. Given the impact of social exclusion on mental and emotional health, an understanding of how perceptions of social exclusion develop over the course of a social interaction is important for advancing treatments aimed at lessening the harmful costs of being excluded. To date, most scientific examinations of social exclusion have looked at exclusion after a social interaction has been completed. While this has been very helpful in developing an understanding of what happens to a person following exclusion, it has not helped to clarify the moment-to-moment dynamics of the process of social exclusion. Accordingly, the current protocol was developed to obtain an improved understanding of social exclusion by examining the patterns of event-related brain activation that are present during social interactions. This protocol allows greater precision and sensitivity in detailing the social processes that lead people to feel as though they have been excluded from a social interaction. Importantly, the current protocol can be adapted to include research projects that vary the nature of exclusionary social interactions by altering how frequently participants are included, how long the periods of exclusion will last in each interaction, and when exclusion will take place during the social interactions. Further, the current protocol can be used to examine variables and constructs beyond those related to social exclusion. This capability to address a variety of applications across psychology by obtaining both neural and behavioral data during ongoing social interactions suggests the present protocol could be at the core of a developing area of scientific inquiry related to social interactions.
Behavior, Issue 93, Event-related brain potentials (ERPs), Social Exclusion, Neuroscience, N2, P3, Cognitive Control
Play Button
The use of Biofeedback in Clinical Virtual Reality: The INTREPID Project
Authors: Claudia Repetto, Alessandra Gorini, Cinzia Vigna, Davide Algeri, Federica Pallavicini, Giuseppe Riva.
Institutions: Istituto Auxologico Italiano, Università Cattolica del Sacro Cuore.
Generalized anxiety disorder (GAD) is a psychiatric disorder characterized by a constant and unspecific anxiety that interferes with daily-life activities. Its high prevalence in general population and the severe limitations it causes, point out the necessity to find new efficient strategies to treat it. Together with the cognitive-behavioral treatments, relaxation represents a useful approach for the treatment of GAD, but it has the limitation that it is hard to be learned. The INTREPID project is aimed to implement a new instrument to treat anxiety-related disorders and to test its clinical efficacy in reducing anxiety-related symptoms. The innovation of this approach is the combination of virtual reality and biofeedback, so that the first one is directly modified by the output of the second one. In this way, the patient is made aware of his or her reactions through the modification of some features of the VR environment in real time. Using mental exercises the patient learns to control these physiological parameters and using the feedback provided by the virtual environment is able to gauge his or her success. The supplemental use of portable devices, such as PDA or smart-phones, allows the patient to perform at home, individually and autonomously, the same exercises experienced in therapist's office. The goal is to anchor the learned protocol in a real life context, so enhancing the patients' ability to deal with their symptoms. The expected result is a better and faster learning of relaxation techniques, and thus an increased effectiveness of the treatment if compared with traditional clinical protocols.
Neuroscience, Issue 33, virtual reality, biofeedback, generalized anxiety disorder, Intrepid, cybertherapy, cyberpsychology
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Play Button
The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress
Authors: Jaap M. Koolhaas, Caroline M. Coppens, Sietse F. de Boer, Bauke Buwalda, Peter Meerlo, Paul J.A. Timmermans.
Institutions: University Groningen, Radboud University Nijmegen.
This video publication explains in detail the experimental protocol of the resident-intruder paradigm in rats. This test is a standardized method to measure offensive aggression and defensive behavior in a semi natural setting. The most important behavioral elements performed by the resident and the intruder are demonstrated in the video and illustrated using artistic drawings. The use of the resident intruder paradigm for acute and chronic social stress experiments is explained as well. Finally, some brief tests and criteria are presented to distinguish aggression from its more violent and pathological forms.
Behavior, Issue 77, Neuroscience, Medicine, Anatomy, Physiology, Genetics, Basic Protocols, Psychology, offensive aggression, defensive behavior, aggressive behavior, pathological, violence, social stress, rat, Wistar rat, animal model
Play Button
Brain Imaging Investigation of the Memory-Enhancing Effect of Emotion
Authors: Andrea Shafer, Alexandru Iordan, Roberto Cabeza, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, Urbana-Champaign, Duke University, University of Illinois, Urbana-Champaign.
Emotional events tend to be better remembered than non-emotional events1,2. One goal of cognitive and affective neuroscientists is to understand the neural mechanisms underlying this enhancing effect of emotion on memory. A method that has proven particularly influential in the investigation of the memory-enhancing effect of emotion is the so-called subsequent memory paradigm (SMP). This method was originally used to investigate the neural correlates of non-emotional memories3, and more recently we and others also applied it successfully to studies of emotional memory (reviewed in4, 5-7). Here, we describe a protocol that allows investigation of the neural correlates of the memory-enhancing effect of emotion using the SMP in conjunction with event-related functional magnetic resonance imaging (fMRI). An important feature of the SMP is that it allows separation of brain activity specifically associated with memory from more general activity associated with perception. Moreover, in the context of investigating the impact of emotional stimuli, SMP allows identification of brain regions whose activity is susceptible to emotional modulation of both general/perceptual and memory-specific processing. This protocol can be used in healthy subjects8-15, as well as in clinical patients where there are alterations in the neural correlates of emotion perception and biases in remembering emotional events, such as those suffering from depression and post-traumatic stress disorder (PTSD)16, 17.
Neuroscience, Issue 51, Affect, Recognition, Recollection, Dm Effect, Neuroimaging
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotion Regulation
Authors: Sanda Dolcos, Keen Sung, Ekaterina Denkova, Roger A. Dixon, Florin Dolcos.
Institutions: University of Illinois, Urbana-Champaign, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
The ability to control/regulate emotions is an important coping mechanism in the face of emotionally stressful situations. Although significant progress has been made in understanding conscious/deliberate emotion regulation (ER), less is known about non-conscious/automatic ER and the associated neural correlates. This is in part due to the problems inherent in the unitary concepts of automatic and conscious processing1. Here, we present a protocol that allows investigation of the neural correlates of both deliberate and automatic ER using functional magnetic resonance imaging (fMRI). This protocol allows new avenues of inquiry into various aspects of ER. For instance, the experimental design allows manipulation of the goal to regulate emotion (conscious vs. non-conscious), as well as the intensity of the emotional challenge (high vs. low). Moreover, it allows investigation of both immediate (emotion perception) and long-term effects (emotional memory) of ER strategies on emotion processing. Therefore, this protocol may contribute to better understanding of the neural mechanisms of emotion regulation in healthy behaviour, and to gaining insight into possible causes of deficits in depression and anxiety disorders in which emotion dysregulation is often among the core debilitating features.
Neuroscience, Issue 54, Emotion Suppression, Automatic Emotion Control, Deliberate Emotion Control, Goal Induction, Neuroimaging
Play Button
Brain Imaging Investigation of the Impairing Effect of Emotion on Cognition
Authors: Gloria Wong, Sanda Dolcos, Ekaterina Denkova, Rajendra Morey, Lihong Wang, Gregory McCarthy, Florin Dolcos.
Institutions: University of Alberta, University of Alberta, University of Illinois, Duke University , Duke University , VA Medical Center, Yale University, University of Illinois, University of Illinois.
Emotions can impact cognition by exerting both enhancing (e.g., better memory for emotional events) and impairing (e.g., increased emotional distractibility) effects (reviewed in 1). Complementing our recent protocol 2 describing a method that allows investigation of the neural correlates of the memory-enhancing effect of emotion (see also 1, 3-5), here we present a protocol that allows investigation of the neural correlates of the detrimental impact of emotion on cognition. The main feature of this method is that it allows identification of reciprocal modulations between activity in a ventral neural system, involved in 'hot' emotion processing (HotEmo system), and a dorsal system, involved in higher-level 'cold' cognitive/executive processing (ColdEx system), which are linked to cognitive performance and to individual variations in behavior (reviewed in 1). Since its initial introduction 6, this design has proven particularly versatile and influential in the elucidation of various aspects concerning the neural correlates of the detrimental impact of emotional distraction on cognition, with a focus on working memory (WM), and of coping with such distraction 7,11, in both healthy 8-11 and clinical participants 12-14.
Neuroscience, Issue 60, Emotion-Cognition Interaction, Cognitive/Emotional Interference, Task-Irrelevant Distraction, Neuroimaging, fMRI, MRI
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.