JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC genes are symbionts of New Zealand Carmichaelinae.
PLoS ONE
New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus) produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae.
Authors: Sylvie Sanschagrin, Etienne Yergeau.
Published: 08-29-2014
ABSTRACT
One of the major questions in microbial ecology is “who is there?” This question can be answered using various tools, but one of the long-lasting gold standards is to sequence 16S ribosomal RNA (rRNA) gene amplicons generated by domain-level PCR reactions amplifying from genomic DNA. Traditionally, this was performed by cloning and Sanger (capillary electrophoresis) sequencing of PCR amplicons. The advent of next-generation sequencing has tremendously simplified and increased the sequencing depth for 16S rRNA gene sequencing. The introduction of benchtop sequencers now allows small labs to perform their 16S rRNA sequencing in-house in a matter of days. Here, an approach for 16S rRNA gene amplicon sequencing using a benchtop next-generation sequencer is detailed. The environmental DNA is first amplified by PCR using primers that contain sequencing adapters and barcodes. They are then coupled to spherical particles via emulsion PCR. The particles are loaded on a disposable chip and the chip is inserted in the sequencing machine after which the sequencing is performed. The sequences are retrieved in fastq format, filtered and the barcodes are used to establish the sample membership of the reads. The filtered and binned reads are then further analyzed using publically available tools. An example analysis where the reads were classified with a taxonomy-finding algorithm within the software package Mothur is given. The method outlined here is simple, inexpensive and straightforward and should help smaller labs to take advantage from the ongoing genomic revolution.
26 Related JoVE Articles!
Play Button
Light/dark Transition Test for Mice
Authors: Keizo Takao, Tsuyoshi Miyakawa.
Institutions: Graduate School of Medicine, Kyoto University.
Although all of the mouse genome sequences have been determined, we do not yet know the functions of most of these genes. Gene-targeting techniques, however, can be used to delete or manipulate a specific gene in mice. The influence of a given gene on a specific behavior can then be determined by conducting behavioral analyses of the mutant mice. As a test for behavioral phenotyping of mutant mice, the light/dark transition test is one of the most widely used tests to measure anxiety-like behavior in mice. The test is based on the natural aversion of mice to brightly illuminated areas and on their spontaneous exploratory behavior in novel environments. The test is sensitive to anxiolytic drug treatment. The apparatus consists of a dark chamber and a brightly illuminated chamber. Mice are allowed to move freely between the two chambers. The number of entries into the bright chamber and the duration of time spent there are indices of bright-space anxiety in mice. To obtain phenotyping results of a strain of mutant mice that can be readily reproduced and compared with those of other mutants, the behavioral test methods should be as identical as possible between laboratories. The procedural differences that exist between laboratories, however, make it difficult to replicate or compare the results among laboratories. Here, we present our protocol for the light/dark transition test as a movie so that the details of the protocol can be demonstrated. In our laboratory, we have assessed more than 60 strains of mutant mice using the protocol shown in the movie. Those data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will facilitate understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used across laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.
Neuroscience, Issue 1, knockout mice, transgenic mice, behavioral test, phenotyping
104
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
3916
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
2498
Play Button
Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding
Authors: David Almond, Timothy Cardozo.
Institutions: School of Medicine, New York University.
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Infection, Issue 43, HIV-1, structure-activity relationships, ab initio simulations, antibody-mediated neutralization, vaccine design
2118
Play Button
Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose
Authors: Yongqi Shao, Erika M Arias-Cordero, Wilhelm Boland.
Institutions: Max Planck Institute for Chemical Ecology.
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, 13C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.
Microbiology, Issue 81, Insects, Sequence Analysis, Genetics, Microbial, Bacteria, Lepidoptera, Spodoptera littoralis, stable-isotope-probing (SIP), pyro-sequencing, 13C-glucose, gut, microbiota, bacteria
50734
Play Button
Bacterial Detection & Identification Using Electrochemical Sensors
Authors: Colin Halford, Vincent Gau, Bernard M. Churchill, David A. Haake.
Institutions: Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles , GeneFluidics, Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles .
Electrochemical sensors are widely used for rapid and accurate measurement of blood glucose and can be adapted for detection of a wide variety of analytes. Electrochemical sensors operate by transducing a biological recognition event into a useful electrical signal. Signal transduction occurs by coupling the activity of a redox enzyme to an amperometric electrode. Sensor specificity is either an inherent characteristic of the enzyme, glucose oxidase in the case of a glucose sensor, or a product of linkage between the enzyme and an antibody or probe. Here, we describe an electrochemical sensor assay method to directly detect and identify bacteria. In every case, the probes described here are DNA oligonucleotides. This method is based on sandwich hybridization of capture and detector probes with target ribosomal RNA (rRNA). The capture probe is anchored to the sensor surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its surface, the substrate is oxidized by HRP and reduced by the working electrode. This redox cycle results in shuttling of electrons by the substrate from the electrode to HRP, producing current flow in the electrode.
Bioengineering, Issue 74, Microbiology, Genetics, Molecular Biology, Cellular Biology, Biochemistry, Biomedical Engineering, Medicine, Immunology, Bacteria, Electrochemical sensor, ribosomal RNA, rRNA, 16S RNA, DNA, probe, assay
4282
Play Button
A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples
Authors: Michael J. Rothrock Jr., Kelli L. Hiett, John Gamble, Andrew C. Caudill, Kellie M. Cicconi-Hogan, J. Gregory Caporaso.
Institutions: USDA-Agricultural Research Service, USDA-Agricultural Research Service, Oregon State University, University of Georgia, Northern Arizona University.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.
Molecular Biology, Issue 94, DNA extraction, poultry, environmental, feces, litter, semi-automated, microbiomics, qPCR
52161
Play Button
Profiling of Methyltransferases and Other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS)
Authors: Thomas Lenz, Peter Poot, Olivia Gräbner, Mirko Glinski, Elmar Weinhold, Mathias Dreger, Hubert Köster.
Institutions: caprotec bioanalytics GmbH, RWTH Aachen University.
There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography 1 or Activity Based Protein Profiling 2. Trifunctional Capture Compounds (CCs, Figure 1A) 3 are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-L-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" 4 or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-L-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature 5, 6. It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA 7, RNA 8, proteins 9, or small molecules 10. Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor 11. For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability 12, SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.
Biochemistry, Issue 46, Capture Compound, photo-crosslink, small molecule-protein interaction, methyltransferase, S-adenosyl-l-homocysteine, SAH, S-adenosyl-l-methionine, SAM, functional proteomics, LC-MS/MS
2264
Play Button
Discovery of New Intracellular Pathogens by Amoebal Coculture and Amoebal Enrichment Approaches
Authors: Nicolas Jacquier, Sébastien Aeby, Julia Lienard, Gilbert Greub.
Institutions: University Hospital Center and University of Lausanne.
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Immunology, Issue 80, Environmental Microbiology, Soil Microbiology, Water Microbiology, Amoebae, microorganisms, coculture, obligate intracellular bacteria
51055
Play Button
Bromodeoxyuridine (BrdU) Labeling and Subsequent Fluorescence Activated Cell Sorting for Culture-independent Identification of Dissolved Organic Carbon-degrading Bacterioplankton
Authors: Steven Robbins, Jisha Jacob, Xinxin Lu, Mary Ann Moran, Xiaozhen Mou.
Institutions: Kent State University, University of Georgia (UGA).
Microbes are major agents mediating the degradation of numerous dissolved organic carbon (DOC) substrates in aquatic environments. However, identification of bacterial taxa that transform specific pools of DOC in nature poses a technical challenge. Here we describe an approach that couples bromodeoxyuridine (BrdU) incorporation, fluorescence activated cell sorting (FACS), and 16S rRNA gene-based molecular analysis that allows culture-independent identification of bacterioplankton capable of degrading a specific DOC compound in aquatic environments. Triplicate bacterioplankton microcosms are set up to receive both BrdU and a model DOC compound (DOC amendments), or only BrdU (no-addition control). BrdU substitutes the positions of thymidine in newly synthesized bacterial DNA and BrdU-labeled DNA can be readily immunodetected 1,2. Through a 24-hr incubation, bacterioplankton that are able to use the added DOC compound are expected to be selectively activated, and therefore have higher levels of BrdU incorporation (HI cells) than non-responsive cells in the DOC amendments and cells in no-addition controls (low BrdU incorporation cells, LI cells). After fluorescence immunodetection, HI cells are distinguished and physically separated from the LI cells by fluorescence activated cell sorting (FACS) 3. Sorted DOC-responsive cells (HI cells) are extracted for DNA and taxonomically identified through subsequent 16S rRNA gene-based analyses including PCR, clone library construction and sequencing.
Molecular Biology, Issue 55, BrdU incorporation, fluorescence-activated cell sorting, FACS, flow cytometry, microbial community, culture-independent, bacterioplankton
2855
Play Button
DNA Stable-Isotope Probing (DNA-SIP)
Authors: Eric A. Dunford, Josh D. Neufeld.
Institutions: University of Waterloo.
DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.
Microbiology, Issue 42, DNA stable-isotope probing, microbiology, microbial ecology, cultivation-independent, metagenomics, 16S rRNA gene community analysis, substrates, microbial ecology, enrichment
2027
Play Button
Mosaic Zebrafish Transgenesis for Evaluating Enhancer Sequences
Authors: Erika Kague, Christopher Weber, Shannon Fisher.
Institutions: University of Pennsylvania .
The completion of the human genome sequence, along with that of many other species, has highlighted the challenge of ascribing specific function to non coding sequences. One prominent function carried out by the non coding fraction of the genome is to regulate gene transcription; however, there are no effective methods to broadly predict cis-regulatory elements from primary DNA sequence. We have developed an efficient protocol to functionally evaluate potential cis-regulatory elements through zebrafish transgenesis. Our approach offers significant advantages over cell-culture based techniques for developmentally important genes, since it provides information on spatial and temporal gene regulation. Conversely, it is faster and less expensive than similar experiments in transgenic mice, and we routinely apply it to sequences isolated from the human genome. Here we demonstrate our approach to selecting elements for testing based on sequence conservation and our protocol for cloning sequences and microinjecting them into zebrafish embryos.
Cellular Biology, Issue 41, zebrafish, transgenesis, microinjection, GFP, enhancers, transposon
1722
Play Button
One-day Workflow Scheme for Bacterial Pathogen Detection and Antimicrobial Resistance Testing from Blood Cultures
Authors: Wendy L.J. Hansen, Judith Beuving, Annelies Verbon, Petra. F.G. Wolffs.
Institutions: Maastricht University Medical Center, Erasmus Medical Center.
Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock1. Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours2, 4. The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes5. Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h. Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods6. This assay was based on a study in which PCR was used to measure the growth of bacteria7. Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.
Immunology, Issue 65, Infection, Medicine, Microbiology, Bacteria, real-time PCR, probes, pathogen detection, blood culture, 16S rDNA gene, antibiotic resistance, antibiotic susceptibility testing
3254
Play Button
Depletion of Ribosomal RNA for Mosquito Gut Metagenomic RNA-seq
Authors: Phanidhar Kukutla, Matthew Steritz, Jiannong Xu.
Institutions: New Mexico State University.
The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.
Genetics, Issue 74, Infection, Infectious Diseases, Molecular Biology, Cellular Biology, Microbiology, Genomics, biology (general), genetics (animal and plant), life sciences, Eukaryota, Bacteria, metagenomics, metatranscriptome, RNA-seq, rRNA depletion, mRNA enrichment, mosquito gut microbiome, RNA, DNA, sequencing
50093
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
4182
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions
Authors: Yo Suzuki, Jason Stam, Mark Novotny, Nozomu Yachie, Roger S. Lasken, Frederick P. Roth.
Institutions: J. Craig Venter Institute, J. Craig Venter Institute, University of Toronto, Mt Sinai Hospital.
Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative. In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated. Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction. The first step is to prepare haploid single-mutants termed 'ProMonsters,' each of which carries a GFP reporter in a deleted locus and one of the 'toolkit' loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids. The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.
Microbiology, Issue 70, Genetics, Synthetic Biology, Environmental Genomics, Genomics, Bioengineering, Biomedical Engineering, Cellular Biology, Multi-site genomic engineering, genetic interaction, green fluorescent protein, GFP, flow cytometry, Saccharomyces cerevisiae, yeast, Green Monster
4072
Play Button
Principles of Site-Specific Recombinase (SSR) Technology
Authors: Frank Bucholtz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences. SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.
Cellular Biology, Issue 15, Molecular Biology, Site-Specific Recombinase, Cre recombinase, Cre/lox system, transgenic animals, transgenic technology
718
Play Button
Virus-induced Gene Silencing (VIGS) in Nicotiana benthamiana and Tomato
Authors: Andrá C. Velásquez, Suma Chakravarthy, Gregory B. Martin.
Institutions: Cornell University, Boyce Thompson Institute for Plant Research.
RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA1. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development2,3,4. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host5. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript2. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS6,7. Inoculation of Nicotiana benthamiana and tomato seedlings with a mixture of both strains results in gene silencing. Silencing of the endogenous phytoene desaturase (PDS) gene, which causes photobleaching, is used as a control for VIGS efficiency. It should be noted, however, that silencing in tomato is usually less efficient than in N. benthamiana. RNA transcript abundance of the gene of interest should always be measured to ensure that the target gene has efficiently been down-regulated. Nevertheless, heterologous gene sequences from N. benthamiana can be used to silence their respective orthologs in tomato and vice versa8.
Plant Biology, Issue 28, Virus-induced gene silencing (VIGS), RNA interference (RNAi), Tobacco Rattle Virus (TRV) vectors, Nicotiana benthamiana, tomato
1292
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
791
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.