JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Modeling intracerebral hemorrhage growth and response to anticoagulation.
PLoS ONE
The mechanism for hemorrhage enlargement in the brain, a key determinant of patient outcome following hemorrhagic stroke, is unknown. We performed computer-based stochastic simulation of one proposed mechanism, in which hemorrhages grow in "domino" fashion via secondary shearing of neighboring vessel segments. Hemorrhages were simulated by creating an initial site of primary bleeding and an associated risk of secondary rupture at adjacent sites that decayed over time. Under particular combinations of parameters for likelihood of secondary rupture and time-dependent decay, a subset of lesions expanded, creating a bimodal distribution of microbleeds and macrobleeds. Systematic variation of the model to simulate anticoagulation yielded increases in both macrobleed occurrence (26.9%, 53.2%, and 70.0% of all hemorrhagic events under conditions simulating no, low-level, and high-level anticoagulation) and final hemorrhage size (median volumes 111, 276, and 412 under the same three conditions), consistent with data from patients with anticoagulant-related brain hemorrhages. Reversal from simulated high-level anticoagulation to normal coagulation was able to reduce final hemorrhage size only if applied relatively early in the course of hemorrhage expansion. These findings suggest that a model based on a secondary shearing mechanism can account for some of the clinically observed properties of intracerebral hemorrhage, including the bimodal distribution of volumes and the enhanced hemorrhage growth seen with anticoagulation. Future iterations of this model may be useful for elucidating the effects of hemorrhage growth of factors related to secondary shearing (such as small vessel pathology) or time-dependent decay (such as hemostatic agents).
Authors: Beilei Lei, Huaxin Sheng, Haichen Wang, Christopher D. Lascola, David S. Warner, Daniel T. Laskowitz, Michael L. James.
Published: 07-03-2014
ABSTRACT
Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies.
17 Related JoVE Articles!
Play Button
Modeling Intracerebral Hemorrhage in Mice: Injection of Autologous Blood or Bacterial Collagenase
Authors: Paul R. Krafft, William B. Rolland, Kamil Duris, Tim Lekic, Aaron Campbell, Jiping Tang, John H. Zhang.
Institutions: Loma Linda University School of Medicine, University of California, Riverside , Loma Linda University School of Medicine, Loma Linda University School of Medicine.
Spontaneous intracerebral hemorrhage (ICH) defines a potentially life-threatening neurological malady that accounts for 10-15% of all stroke-related hospitalizations and for which no effective treatments are available to date1,2. Because of the heterogeneity of ICH in humans, various preclinical models are needed to thoroughly explore prospective therapeutic strategies3. Experimental ICH is commonly induced in rodents by intraparenchymal injection of either autologous blood or bacterial collagenase4. The appropriate model is selected based on the pathophysiology of hemorrhage induction and injury progression. The blood injection model mimics a rapidly progressing hemorrhage. Alternatively, bacterial collagenase enzymatically disrupts the basal lamina of brain capillaries, causing an active bleed that generally evolves over several hours5. Resultant perihematomal edema and neurofunctional deficits can be quantified from both models. In this study, we described and evaluated a modified double injection model of autologous whole blood6 as well as an ICH injection model of bacterial collagenase7, both of which target the basal ganglia (corpus striatum) of male CD-1 mice. We assessed neurofunctional deficits and brain edema at 24 and 72 hr after ICH induction. Intrastriatal injection of autologous blood (30 μl) or bacterial collagenase (0.075U) caused reproducible neurofunctional deficits in mice and significantly increased brain edema at 24 and 72 hr after surgery (p<0.05). In conclusion, both models yield consistent hemorrhagic infarcts and represent basic methods for preclinical ICH research.
Medicine, Issue 67, Physiology, Neuroscience, Immunology, experimental stroke, animal model, autologous blood, collagenase, intracerebral hemorrhage, basal ganglia, brain injury, edema, behavior, mouse
4289
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
52132
Play Button
A Low Mortality Rat Model to Assess Delayed Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage
Authors: Rahul V. Dudhani, Michele Kyle, Christina Dedeo, Margaret Riordan, Eric M. Deshaies.
Institutions: SUNY Upstate Medical University, SUNY Upstate Medical University.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment. Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer's statistical analysis. Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm. Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.
Medicine, Issue 71, Anatomy, Physiology, Neurobiology, Neuroscience, Immunology, Surgery, Aneurysm, cerebral, hemorrhage, model, mortality, rat, rodent, subarachnoid, vasospasm, animal model
4157
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Prehospital Thrombolysis: A Manual from Berlin
Authors: Martin Ebinger, Sascha Lindenlaub, Alexander Kunz, Michal Rozanski, Carolin Waldschmidt, Joachim E. Weber, Matthias Wendt, Benjamin Winter, Philipp A. Kellner, Sabina Kaczmarek, Matthias Endres, Heinrich J. Audebert.
Institutions: Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Universitätsklinikum Hamburg - Eppendorf, Berliner Feuerwehr, STEMO-Consortium.
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient's medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse). Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.
Medicine, Issue 81, Telemedicine, Emergency Medical Services, Stroke, Tomography, X-Ray Computed, Emergency Treatment,[stroke, thrombolysis, prehospital, emergency medical services, ambulance
50534
Play Button
Reproducable Paraplegia by Thoracic Aortic Occlusion in a Murine Model of Spinal Cord Ischemia-reperfusion
Authors: Marshall T. Bell, T. Brett Reece, Phillip D. Smith, Joshua Mares, Michael J. Weyant, Joseph C. Cleveland Jr., Kirsten A. Freeman, David A. Fullerton, Ferenc Puskas.
Institutions: University of Colorado, University of Colorado.
Background Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion. Methods Adult male C57BL6 mice were anesthetized with isoflurane. Through a cervicosternal incision the aorta was exposed. The descending thoracic aorta and left subclavian arteries were identified without entrance into pleural space. Skeletonization of these arteries was followed by immediate closure (Sham) or occlusion for 4 min (moderate ischemia) or 8 min (prolonged ischemia). The sternotomy and skin were closed and the mouse was transferred to warming bed for recovery.  Following recovery, functional analysis was obtained at 12 hr intervals until 48 hr. Results Mice that underwent sham surgery showed no observable hind limb deficit. Mice subjected to moderate ischemia for 4 min had minimal functional deficit at 12 hr followed by progression to complete paralysis at 48 hr. Mice subjected to prolonged ischemia had an immediate paralysis with no observable hind-limb movement at any point in the postoperative period. There was no observed intraoperative or post operative mortality. Conclusion Reproducible lower extremity paralysis whether immediate or delayed can be achieved in a murine model. Additionally, by using a median sternotomy and careful dissection, high survival rates, and reproducibility can be achieved.
Medicine, Issue 85, Spinal cord injury, thoracic aorta, paraplegia, Ischemia, reperfusion, murine model
50910
Play Button
Embolic Middle Cerebral Artery Occlusion (MCAO) for Ischemic Stroke with Homologous Blood Clots in Rats
Authors: Rong Jin, Xiaolei Zhu, Guohong Li.
Institutions: Louisiana State University Health Science Center, Shreveport.
Clinically, thrombolytic therapy with use of recombinant tissue plasminogen activator (tPA) remains the most effective treatment for acute ischemic stroke. However, the use of tPA is limited by its narrow therapeutic window and by increased risk of hemorrhagic transformation. There is an urgent need to develop suitable stroke models to study new thrombolytic agents and strategies for treatment of ischemic stroke. At present, two major types of ischemic stroke models have been developed in rats and mice: intraluminal suture MCAO and embolic MCAO. Although MCAO models via the intraluminal suture technique have been widely used in mechanism-driven stroke research, these suture models do not mimic the clinical situation and are not suitable for thrombolytic studies. Among these models, the embolic MCAO model closely mimics human ischemic stroke and is suitable for preclinical investigation of thrombolytic therapy. This embolic model was first developed in rats by Overgaard et al.1 in 1992 and further characterized by Zhang et al. in 19972. Although embolic MCAO has gained increasing attention, there are technical problems faced by many laboratories. To meet increasing needs for thrombolytic research, we present a highly reproducible model of embolic MCAO in the rat, which can develop a predictable infarct volume within the MCA territory. In brief, a modified PE-50 tube is gently advanced from the external carotid artery (ECA) into the lumen of the internal carotid artery (ICA) until the tip of the catheter reaches the origin of the MCA. Through the catheter, a single homologous blood clot is placed at the origin of the MCA. To identify the success of MCA occlusion, regional cerebral blood flow was monitored, neurological deficits and infarct volumes were measured. The techniques presented in this paper should help investigators to overcome technical problems for establishing this model for stroke research.
Medicine, Issue 91, ischemic stroke, model, embolus, middle cerebral artery occlusion, thrombolytic therapy
51956
Play Button
Pseudofracture: An Acute Peripheral Tissue Trauma Model
Authors: Sophie S. Darwiche, Philipp Kobbe, Roman Pfeifer, Lauryn Kohut, Hans-Christoph Pape, Timothy Billiar.
Institutions: University of Pittsburgh, University of Aachen Medical Center.
Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality.1-9 Many studies have begun to assess these changes in the reactivity of the immune system following trauma.10-15 Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses.16-21 The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible.22-30 This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. 31 Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. 32-36 The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity. 37
Medicine, Issue 50, Trauma, musculoskeletal, mouse, extremity, inflammation, immunosuppression, immune response.
2074
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
51154
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
50418
Play Button
Retinal Detachment Model in Rodents by Subretinal Injection of Sodium Hyaluronate
Authors: Hidetaka Matsumoto, Joan W. Miller, Demetrios G. Vavvas.
Institutions: Massachusetts Eye and Ear Infirmary, Harvard Medical School.
Subretinal injection of sodium hyaluronate is a widely accepted method of inducing retinal detachment (RD). However, the height and duration of RD or the occurrence of subretinal hemorrhage can affect photoreceptor cell death in the detached retina. Hence, it is advantageous to create reproducible RDs without subretinal hemorrhage for evaluating photoreceptor cell death. We modified a previously reported method to create bullous and persistent RDs in a reproducible location with rare occurrence of subretinal hemorrhage. The critical step of this modified method is the creation of a self-sealing scleral incision, which can prevent leakage of sodium hyaluronate after injection into the subretinal space. To make the self-sealing scleral incision, a scleral tunnel is created, followed by scleral penetration into the choroid with a 30 G needle. Although choroidal hemorrhage may occur during this step, astriction with a surgical spear reduces the rate of choroidal hemorrhage. This method allows a more reproducible and reliable model of photoreceptor death in diseases that involve RD such as rhegmatogenous RD, retinopathy of prematurity, diabetic retinopathy, central serous chorioretinopathy, and age-related macular degeneration (AMD).
Medicine, Issue 79, Photoreceptor Cells, Rodentia, Retinal Degeneration, Retinal Detachment, animal models, Neuroscience, ophthalmology, retina, mouse, photoreceptor cell death, retinopathy, age-related macular degeneration (AMD)
50660
Play Button
Autologous Blood Injection to Model Spontaneous Intracerebral Hemorrhage in Mice
Authors: Lauren H. Sansing, Scott E. Kasner, Louise McCullough, Puneet Agarwal, Frank A. Welsh, Katalin Kariko.
Institutions: University of Connecticut Health Center, School of Medicine, University of Pennsylvania, Hartford Hospital, School of Medicine, University of Pennsylvania.
Investigation of the pathophysiology of injury after intracerebral hemorrhage (ICH) requires a reproducible animal model. While ICH accounts for 10-15% of all strokes, there remains no specific effective therapy. The autologous blood injection model in mice involves the stereotaxic injection of arterial blood into the basal ganglia mimicking a spontaneous hypertensive hemorrhage in man. The response to hemorrhage can then be studied in vivo and the neurobehavioral deficits quantified, allowing for description of the ensuing pathology and the testing of potential therapeutic agents. The procedure described in this protocol uses the double injection technique to minimize risk of blood reflux up the needle track, no anticoagulants in the pumping system, and eliminates all dead space and expandable tubing in the system.
Neuroscience, Issue 54, stroke, intracerebral hemorrhage, mice, animal model
2618
Play Button
Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Institutions: University Hospital Munich, Munich Cluster for Systems Neurology (SyNergy), University Heidelberg, Charing Cross Hospital.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Medicine, Issue 89, stroke, brain ischemia, animal model, middle cerebral artery, electrocoagulation
51729
Play Button
A Murine Model of Subarachnoid Hemorrhage
Authors: Kathrin Schüller, Dominik Bühler, Nikolaus Plesnila.
Institutions: University of Munich Medical Center.
In this video publication a standardized mouse model of subarachnoid hemorrhage (SAH) is presented. Bleeding is induced by endovascular Circle of Willis perforation (CWp) and proven by intracranial pressure (ICP) monitoring. Thereby a homogenous blood distribution in subarachnoid spaces surrounding the arterial circulation and cerebellar fissures is achieved. Animal physiology is maintained by intubation, mechanical ventilation, and continuous on-line monitoring of various physiological and cardiovascular parameters: body temperature, systemic blood pressure, heart rate, and hemoglobin saturation. Thereby the cerebral perfusion pressure can be tightly monitored resulting in a less variable volume of extravasated blood. This allows a better standardization of endovascular filament perforation in mice and makes the whole model highly reproducible. Thus it is readily available for pharmacological and pathophysiological studies in wild type and genetically altered mice.
Medicine, Issue 81, Nervous System Diseases, Subarachnoid hemorrhage (SAH), mouse model, filament perforation, intracranial pressure monitoring, blood distribution, surgical technique
50845
Play Button
Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility
Authors: Robert Szulcek, Harm Jan Bogaard, Geerten P. van Nieuw Amerongen.
Institutions: Institute for Cardiovascular Research, VU University Medical Center, Institute for Cardiovascular Research, VU University Medical Center.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Bioengineering, Issue 85, ECIS, Impedance Spectroscopy, Resistance, TEER, Endothelial Barrier, Cell Adhesions, Focal Adhesions, Proliferation, Migration, Motility, Wound Healing
51300
Play Button
Microsurgical Clip Obliteration of Middle Cerebral Aneurysm Using Intraoperative Flow Assessment
Authors: Bob S. Carter, Christopher Farrell, Christopher Owen.
Institutions: Havard Medical School, Massachusetts General Hospital.
Cerebral aneurysms are abnormal widening or ballooning of a localized segment of an intracranial blood vessel. Surgical clipping is an important treatment for aneurysms which attempts to exclude blood from flowing into the aneurysmal segment of the vessel while preserving blood flow in a normal fashion. Improper clip placement may result in residual aneurysm with the potential for subsequent aneurysm rupture or partial or full occlusion of distal arteries resulting in cerebral infarction. Here we describe the use of an ultrasonic flow probe to provide quantitative evaluation of arterial flow before and after microsurgical clip placement at the base of a middle cerebral artery aneurysm. This information helps ensure adequate aneurysm reconstruction with preservation of normal distal blood flow.
Medicine, Issue 31, Aneurysm, intraoperative, brain, surgery, surgical clipping, blood flow, aneurysmal segment, ultrasonic flow probe
1294
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.