JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2.
Aldosterone synthase (CYP11B2) is a promising therapeutic target for the treatment of cardiovascular diseases related to abnormally high aldosterone levels. On the basis of our previously identified lead compounds I-III, a series of 3-pyridinyl substituted aliphatic cycles were designed, synthesized and tested as CYP11B2 inhibitors. Aromaticity abolishment of the core was successfully applied to overcome the undesired CYP1A2 inhibition. This study resulted in a series of potent and selective CYP11B2 inhibitors, with compound 12 (IC(50)?=?21 nM, SF?=?50) as the most promising one, which shows no inhibition toward CYP1A2 at 2 µM. The design conception demonstrated in this study can be helpful in the optimization of CYP inhibitor drugs regarding CYP1A2 selectivity.
Authors: Steven J. Smith, Stephen H. Hughes.
Published: 04-09-2014
Although a number of anti HIV drugs have been approved, there are still problems with toxicity and drug resistance. This demonstrates a need to identify new compounds that can inhibit infection by the common drug resistant HIV-1 strains with minimal toxicity. Here we describe an efficient assay that can be used to rapidly determine the cellular cytotoxicity and efficacy of a compound against WT and mutant viral strains. The desired target cell line is seeded in a 96-well plate and, after a 24 hr incubation, serially dilutions of the compounds to be tested are added. No further manipulations are necessary for cellular cytotoxicity assays; for anti HIV assays a predetermined amount of either a WT or drug resistant HIV-1 vector that expresses luciferase is added to the cells. Cytotoxicity is measured by using an ATP dependent luminescence assay and the impact of the compounds on infectivity is measured by determining the amount of luciferase in the presence or the absence of the putative inhibitors. This screening assay takes 4 days to complete and multiple compounds can be screened in parallel. Compounds are screened in triplicate and the data are normalized to the infectivity/ATP levels in absence of target compounds. This technique provides a quick and accurate measurement of the efficacy and toxicity of potential anti HIV compounds.
24 Related JoVE Articles!
Play Button
A High Content Imaging Assay for Identification of Botulinum Neurotoxin Inhibitors
Authors: Krishna P. Kota, Veronica Soloveva, Laura M. Wanner, Glenn Gomba, Erkan Kiris, Rekha G. Panchal, Christopher D. Kane, Sina Bavari.
Institutions: Perkin Elmer Inc., Henry M. Jackson Foundation, The Geneva Foundation, ORISE, Frederick National Laboratory for Cancer Research, US Army Medical Research Institute of Infectious Diseases, US Army Medical Research and Materiel Command (USAMRMC).
Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.
Neuroscience, Issue 93, neuroscience, neurobiology, Botulinum neurotoxin, Clostridium botulinum, high content imaging system, neurotoxicity
Play Button
A Quantitative Assay to Study Protein:DNA Interactions, Discover Transcriptional Regulators of Gene Expression, and Identify Novel Anti-tumor Agents
Authors: Karen F. Underwood, Maria T. Mochin, Jessica L. Brusgard, Moran Choe, Avi Gnatt, Antonino Passaniti.
Institutions: University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine.
Many DNA-binding assays such as electrophoretic mobility shift assays (EMSA), chemiluminescent assays, chromatin immunoprecipitation (ChIP)-based assays, and multiwell-based assays are used to measure transcription factor activity. However, these assays are nonquantitative, lack specificity, may involve the use of radiolabeled oligonucleotides, and may not be adaptable for the screening of inhibitors of DNA binding. On the other hand, using a quantitative DNA-binding enzyme-linked immunosorbent assay (D-ELISA) assay, we demonstrate nuclear protein interactions with DNA using the RUNX2 transcription factor that depend on specific association with consensus DNA-binding sequences present on biotin-labeled oligonucleotides. Preparation of cells, extraction of nuclear protein, and design of double stranded oligonucleotides are described. Avidin-coated 96-well plates are fixed with alkaline buffer and incubated with nuclear proteins in nucleotide blocking buffer. Following extensive washing of the plates, specific primary antibody and secondary antibody incubations are followed by the addition of horseradish peroxidase substrate and development of the colorimetric reaction. Stop reaction mode or continuous kinetic monitoring were used to quantitatively measure protein interaction with DNA. We discuss appropriate specificity controls, including treatment with non-specific IgG or without protein or primary antibody. Applications of the assay are described including its utility in drug screening and representative positive and negative results are discussed.
Cellular Biology, Issue 78, Transcription Factors, Vitamin D, Drug Discovery, Enzyme-Linked Immunosorbent Assay (ELISA), DNA-binding, transcription factor, drug screening, antibody
Play Button
A Fluorescent Screening Assay for Identifying Modulators of GIRK Channels
Authors: Maribel Vazquez, Charity A. Dunn, Kenneth B. Walsh.
Institutions: University of South Carolina, School of Medicine.
G protein-gated inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle and endocrine tissue1,2. GIRK channels become activated following the binding of ligands (neurotransmitters, hormones, drugs, etc.) to their plasma membrane-bound, G protein-coupled receptors (GPCRs). This binding causes the stimulation of G proteins (Gi and Go) which subsequently bind to and activate the GIRK channel. Once opened the GIRK channel allows the movement of K+ out of the cell causing the resting membrane potential to become more negative. As a consequence, GIRK channel activation in neurons decreases spontaneous action potential formation and inhibits the release of excitatory neurotransmitters. In the heart, activation of the GIRK channel inhibits pacemaker activity thereby slowing the heart rate. GIRK channels represent novel targets for the development of new therapeutic agents for the treatment neuropathic pain, drug addiction, cardiac arrhythmias and other disorders3. However, the pharmacology of these channels remains largely unexplored. Although a number of drugs including anti-arrhythmic agents, antipsychotic drugs and antidepressants block the GIRK channel, this inhibition is not selective and occurs at relatively high drug concentrations3. Here, we describe a real-time screening assay for identifying new modulators of GIRK channels. In this assay, neuronal AtT20 cells, expressing GIRK channels, are loaded with membrane potential-sensitive fluorescent dyes such as bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] or HLB 021-152 (Figure 1). The dye molecules become strongly fluorescent following uptake into the cells (Figure 1). Treatment of the cells with GPCR ligands stimulates the GIRK channels to open. The resulting K+ efflux out of the cell causes the membrane potential to become more negative and the fluorescent signal to decrease (Figure 1). Thus, drugs that modulate K+ efflux through the GIRK channel can be assayed using a fluorescent plate reader. Unlike other ion channel screening assays, such atomic absorption spectrometry4 or radiotracer analysis5, the GIRK channel fluorescent assay provides a fast, real-time and inexpensive screening procedure.
Medicine, Issue 62, G protein-gated inward rectifier K+ (GIRK) channels, clonal cell lines, drug screening, fluorescent dyes, K+ channel modulators, Pharmacology
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape
Authors: Darryl A. Boyd, Andre A. Adams, Michael A. Daniele, Frances S. Ligler.
Institutions: US Naval Research Laboratory, North Carolina State University and University of North Carolina at Chapel Hill.
A “sheath” fluid passing through a microfluidic channel at low Reynolds number can be directed around another “core” stream and used to dictate the shape as well as the diameter of a core stream. Grooves in the top and bottom of a microfluidic channel were designed to direct the sheath fluid and shape the core fluid. By matching the viscosity and hydrophilicity of the sheath and core fluids, the interfacial effects are minimized and complex fluid shapes can be formed. Controlling the relative flow rates of the sheath and core fluids determines the cross-sectional area of the core fluid. Fibers have been produced with sizes ranging from 300 nm to ~1 mm, and fiber cross-sections can be round, flat, square, or complex as in the case with double anchor fibers. Polymerization of the core fluid downstream from the shaping region solidifies the fibers. Photoinitiated click chemistries are well suited for rapid polymerization of the core fluid by irradiation with ultraviolet light. Fibers with a wide variety of shapes have been produced from a list of polymers including liquid crystals, poly(methylmethacrylate), thiol-ene and thiol-yne resins, polyethylene glycol, and hydrogel derivatives. Minimal shear during the shaping process and mild polymerization conditions also makes the fabrication process well suited for encapsulation of cells and other biological components.
Bioengineering, Issue 83, hydrodynamic focusing, polymer fiber, biohybrid, microfabrication, sheath flow, click chemistry
Play Button
Qualitative Identification of Carboxylic Acids, Boronic Acids, and Amines Using Cruciform Fluorophores
Authors: Thimon Schwaebel, Rio Carlo Lirag, Evan A. Davey, Jaebum Lim, Uwe H. F. Bunz, Ognjen Š. Miljanić.
Institutions: Ruprecht-Karls-Universität Heidelberg, University of Houston.
Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljanić groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10-6 M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked-eye distinction among analytes. For quantification purposes, Red/Green/Blue values can be extracted from these photographs and the obtained numeric data can be statistically processed.
Chemistry, Issue 78, Chemical Engineering, Organic Chemistry, Amines, analytical chemistry, organic chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), Heterocyclic Compounds, fluorescence, cruciform, benzobisoxazole, alkyne, pharmaceuticals, quality control, imaging
Play Button
Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation
Authors: Karthik Pillai, Fernando Navarro Arzate, Wei Zhang, Scott Renneckar.
Institutions: Virginia Tech, Virginia Tech, Illinois Institute of Technology- Moffett Campus, University of Guadalajara, Virginia Tech, Virginia Tech.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.
Plant Biology, Issue 88, nanocellulose, thin films, quartz crystal microbalance, layer-by-layer, LbL
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
Play Button
Real-Time Impedance-based Cell Analyzer as a Tool to Delineate Molecular Pathways Involved in Neurotoxicity and Neuroprotection in a Neuronal Cell Line
Authors: Zoya Marinova, Susanne Walitza, Edna Grünblatt.
Institutions: University of Zürich.
Many brain-related disorders have neuronal cell death involved in their pathophysiology. Improved in vitro models to study neuroprotective or neurotoxic effects of drugs and downstream pathways involved would help gain insight into the molecular mechanisms of neuroprotection/neurotoxicity and could potentially facilitate drug development. However, many existing in vitro toxicity assays have major limitations – most assess neurotoxicity and neuroprotection at a single time point, not allowing to observe the time-course and kinetics of the effect. Furthermore, the opportunity to collect information about downstream signaling pathways involved in neuroprotection in real-time would be of great importance. In the current protocol we describe the use of a real-time impedance-based cell analyzer to determine neuroprotective effects of serotonin 2A (5-HT2A) receptor agonists in a neuronal cell line under label-free and real-time conditions using impedance measurements. Furthermore, we demonstrate that inhibitors of second messenger pathways can be used to delineate downstream molecules involved in the neuroprotective effect. We also describe the utility of this technique to determine whether an effect on cell proliferation contributes to an observed neuroprotective effect. The system utilizes special microelectronic plates referred to as E-Plates which contain alternating gold microelectrode arrays on the bottom surface of the wells, serving as cell sensors. The impedance readout is modified by the number of adherent cells, cell viability, morphology, and adhesion. A dimensionless parameter called Cell Index is derived from the electrical impedance measurements and is used to represent the cell status. Overall, the real-time impedance-based cell analyzer allows for real-time, label-free assessment of neuroprotection and neurotoxicity, and the evaluation of second messenger pathways involvement, contributing to more detailed and high-throughput assessment of potential neuroprotective compounds in vitro, for selecting therapeutic candidates.
Neuroscience, Issue 90, neuroscience, neuronal cell line, neurotoxicity, neuroprotection, real-time impedance-based cell analyzer, second messenger pathways, serotonin
Play Button
Anticancer Metal Complexes: Synthesis and Cytotoxicity Evaluation by the MTT Assay
Authors: Nitzan Ganot, Sigalit Meker, Lilia Reytman, Avia Tzubery, Edit Y. Tshuva.
Institutions: The Hebrew University of Jerusalem.
Titanium (IV) and vanadium (V) complexes are highly potent anticancer agents. A challenge in their synthesis refers to their hydrolytic instability; therefore their preparation should be conducted under an inert atmosphere. Evaluation of the anticancer activity of these complexes can be achieved by the MTT assay. The MTT assay is a colorimetric viability assay based on enzymatic reduction of the MTT molecule to formazan when it is exposed to viable cells. The outcome of the reduction is a color change of the MTT molecule. Absorbance measurements relative to a control determine the percentage of remaining viable cancer cells following their treatment with varying concentrations of a tested compound, which is translated to the compound anticancer activity and its IC50 values. The MTT assay is widely common in cytotoxicity studies due to its accuracy, rapidity, and relative simplicity. Herein we present a detailed protocol for the synthesis of air sensitive metal based drugs and cell viability measurements, including preparation of the cell plates, incubation of the compounds with the cells, viability measurements using the MTT assay, and determination of IC50 values.
Medicine, Issue 81, Inorganic Chemicals, Therapeutics, Metals and Metallic Materials, anticancer drugs, cell viability, cisplatin, metal complex, cytotoxicity, HT-29, metal-based drugs, MTT assay, titanium (IV), vanadium (V)
Play Button
A High-throughput-compatible FRET-based Platform for Identification and Characterization of Botulinum Neurotoxin Light Chain Modulators
Authors: Dejan Caglič, Kristin M. Bompiani, Michelle C. Krutein, Petr Čapek, Tobin J. Dickerson.
Institutions: The Scripps Research Institute, The Scripps Research Institute.
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.
Chemistry, Issue 82, BoNT/A, botulinum neurotoxin, high-throughput screening, FRET, inhibitor, FRET peptide substrate, activator
Play Button
Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog
Authors: Mary J. Sabulski, Jonathan M. Fura, Marcos M. Pires.
Institutions: Lehigh University.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.
Chemistry, Issue 93, PAD4, PADI4, citrullination, arginine, post-translational modification, HTS, assay, fluorescence, citrulline
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
Drug-induced Sensitization of Adenylyl Cyclase: Assay Streamlining and Miniaturization for Small Molecule and siRNA Screening Applications
Authors: Jason M. Conley, Tarsis F. Brust, Ruqiang Xu, Kevin D. Burris, Val J. Watts.
Institutions: Purdue University, Eli Lilly and Company.
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Bioengineering, Issue 83, adenylyl cyclase, cAMP, heterologous sensitization, superactivation, D2 dopamine, μ opioid, siRNA
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
Play Button
Assays for the Identification of Novel Antivirals against Bluetongue Virus
Authors: Linlin Gu, Stewart W. Schneller, Qianjun Li.
Institutions: University of Alabama at Birmingham, Auburn University.
To identify potential antivirals against BTV, we have developed, optimized and validated three assays presented here. The CPE-based assay was the first assay developed to evaluate whether a compound showed any antiviral efficacy and have been used to screen large compound library. Meanwhile, cytotoxicity of antivirals could also be evaluated using the CPE-based assay. The dose-response assay was designed to determine the range of efficacy for the selected antiviral, i.e. 50% inhibitory concentration (IC50) or effective concentration (EC50), as well as its range of cytotoxicity (CC50). The ToA assay was employed for the initial MoA study to determine the underlying mechanism of the novel antivirals during BTV viral lifecycle or the possible effect on host cellular machinery. These assays are vital for the evaluation of antiviral efficacy in cell culture system, and have been used for our recent researches leading to the identification of a number of novel antivirals against BTV.
Immunology, Issue 80, Drug Discovery, Drug Evaluation, Preclinical, Evaluation Studies as Topic, Drug Evaluation, Feasibility Studies, Biological Assay, Technology, Pharmaceutical, High-Throughput Screening Assays, Animal Diseases, Investigative Techniques, Antiviral, Efficacy, Bluetongue Virus, Cytopathic effect, Dose response, Time-of-Addition, Mechanism-of-Action
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.