JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuli.
PLoS ONE
Prion protein (PrP) is well studied for its pathogenic role in prion disease, but its potential contribution to other pathological processes is less understood. PrP is expressed in a variety of cancers and at least in pancreatic and breast cancers, its expression appears to be associated with poor prognosis. To understand the role of PrP in breast cancer cells, we knocked down PrP expression in MDA-MB-435 breast cancer cells with small interfering RNA and subjected these cells to a series of analyses. We found that PrP knockdown in these cells does not affect cell proliferation or colony formation, but significantly influences the cellular response to cytotoxic stimuli. Compared to control cells, PrP knockdown cells exhibited an increased susceptibility to serum deprivation induced apoptosis, no change to staurosporine- or paclitaxel-induced cell deaths, and a reduced susceptibility to chemotherapy drug doxorubicin-induced cell death. To understand the mechanism of unexpected role of PrP in exacerbating doxorubicin-induced cytotoxicity, we analyzed cell death related Bcl-2 family proteins. We found that PrP knockdown alters the expression of several Bcl-2 family proteins, correlating with increased resistance to doxorubicin-induced cytotoxicity. Moreover, the enhanced doxorubicin resistance is independent of DNA damage related p53 pathway, but at least partially through the ERK1/2 pathway. Together, our study revealed that silencing PrP in MDA-MB-435 breast cancer cells results in very different responses to various cytotoxic stimuli and ERK1/2 signaling pathway is involved in PrP silencing caused resistance to doxorubicin.
Authors: Xiangzhu Xiao, Jue Yuan, Wen-Quan Zou.
Published: 10-03-2012
ABSTRACT
The central event in the pathogenesis of prion diseases involves a conversion of the host-encoded cellular prion protein PrPC into its pathogenic isoform PrPSc 1. PrPC is detergent-soluble and sensitive to proteinase K (PK)-digestion, whereas PrPSc forms detergent-insoluble aggregates and is partially resistant to PK2-6. The conversion of PrPC to PrPSc is known to involve a conformational transition of α-helical to β-sheet structures of the protein. However, the in vivo pathway is still poorly understood. A tentative endogenous PrPSc, intermediate PrP* or "silent prion", has yet to be identified in the uninfected brain7. Using a combination of biophysical and biochemical approaches, we identified insoluble PrPC aggregates (designated iPrPC) from uninfected mammalian brains and cultured neuronal cells8, 9. Here, we describe detailed procedures of these methods, including ultracentrifugation in detergent buffer, sucrose step gradient sedimentation, size exclusion chromatography, iPrP enrichment by gene 5 protein (g5p) that specifically bind to structurally altered PrP forms10, and PK-treatment. The combination of these approaches isolates not only insoluble PrPSc and PrPC aggregates but also soluble PrPC oligomers from the normal human brain. Since the protocols described here have been used to isolate both PrPSc from infected brains and iPrPC from uninfected brains, they provide us with an opportunity to compare differences in physicochemical features, neurotoxicity, and infectivity between the two isoforms. Such a study will greatly improve our understanding of the infectious proteinaceous pathogens. The physiology and pathophysiology of iPrPC are unclear at present. Notably, in a newly-identified human prion disease termed variably protease-sensitive prionopathy, we found a new PrPSc that shares the immunoreactive behavior and fragmentation with iPrPC 11, 12. Moreover, we recently demonstrated that iPrPC is the main species that interacts with amyloid-β protein in Alzheimer disease13. In the same study, these methods were used to isolate Abeta aggregates and oligomers in Alzheimer's disease13, suggesting their application to non-prion protein aggregates involved in other neurodegenerative disorders.
22 Related JoVE Articles!
Play Button
Microfluidic Device for Recreating a Tumor Microenvironment in Vitro
Authors: Bhushan J. Toley, Dan E. Ganz, Colin L. Walsh, Neil S. Forbes.
Institutions: University Of Massachusetts Amherst.
We have developed a microfluidic device that mimics the delivery and systemic clearance of drugs to heterogeneous three-dimensional tumor tissues in vitro. Nutrients delivered by vasculature fail to reach all parts of tumors, giving rise to heterogeneous microenvironments consisting of viable, quiescent and necrotic cell types. Many cancer drugs fail to effectively penetrate and treat all types of cells because of this heterogeneity. Monolayers of cancer cells do not mimic this heterogeneity, making it difficult to test cancer drugs with a suitable in vitro model. Our microfluidic devices were fabricated out of PDMS using soft lithography. Multicellular tumor spheroids, formed by the hanging drop method, were inserted and constrained into rectangular chambers on the device and maintained with continuous medium perfusion on one side. The rectangular shape of chambers on the device created linear gradients within tissue. Fluorescent stains were used to quantify the variability in apoptosis within tissue. Tumors on the device were treated with the fluorescent chemotherapeutic drug doxorubicin, time-lapse microscopy was used to monitor its diffusion into tissue, and the effective diffusion coefficient was estimated. The hanging drop method allowed quick formation of uniform spheroids from several cancer cell lines. The device enabled growth of spheroids for up to 3 days. Cells in proximity of flowing medium were minimally apoptotic and those far from the channel were more apoptotic, thereby accurately mimicking regions in tumors adjacent to blood vessels. The estimated value of the doxorubicin diffusion coefficient agreed with a previously reported value in human breast cancer. Because the penetration and retention of drugs in solid tumors affects their efficacy, we believe that this device is an important tool in understanding the behavior of drugs, and developing new cancer therapeutics.
Bioengineering, Issue 57, Microfluidic Device, Tumor Microenvironment, Hanging Drop Spheroids, Apoptosis, Drug Penetration
2425
Play Button
A Simple Protocol for Platelet-mediated Clumping of Plasmodium falciparum-infected Erythrocytes in a Resource Poor Setting
Authors: Dumizulu L. Tembo, Jacqui Montgomery, Alister G. Craig, Samuel C. Wassmer.
Institutions: Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, New York University School of Medicine.
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood. Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9. One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.
Infection, Issue 75, Infectious Diseases, Immunology, Medicine, Microbiology, Molecular Biology, Cellular Biology, Parasitology, Clumping, platelets, Plasmodium falciparum, CD36, malaria, malarial infections, parasites, red blood cells, plasma, limited resources, clinical techniques, assay
4316
Play Button
A Sensitive Method to Quantify Senescent Cancer Cells
Authors: Julie Cahu, Brigitte Sola.
Institutions: Université de Caen Basse-Normandie.
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce. Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required. To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Anatomy, Physiology, Genetics, Oncology, Tumor Cells, Cultured, Early Detection of Cancer, senescence, cancer, cells, flow cytometry, C12FDG, cell culture, clinical applications
50494
Play Button
Cell Death Associated with Abnormal Mitosis Observed by Confocal Imaging in Live Cancer Cells
Authors: Asher Castiel, Leonid Visochek, Leonid Mittelman, Yael Zilberstein, Francoise Dantzer, Shai Izraeli, Malka Cohen-Armon.
Institutions: Sheba Medical Center, Tel-Aviv University, Tel-Aviv University, Tel-Aviv University, Ecole Superieure de Biotechnologie Strasbourg, Tel-Aviv University.
Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells. Most solid human cancers have high occurrence of extra-centrosomes. The activity of PJ-34 was documented in real-time by confocal imaging of live human breast cancer MDA-MB-231 cells transfected with vectors encoding for fluorescent γ-tubulin, which is highly abundant in the centrosomes and for fluorescent histone H2b present in the chromosomes. Aberrant chromosomes arrangements and de-clustered γ-tubulin foci representing declustered centrosomes were detected in the transfected MDA-MB-231 cells after treatment with PJ-34. Un-clustered extra-centrosomes in the two spindle poles preceded their cell death. These results linked for the first time the recently detected exclusive cytotoxic activity of PJ-34 in human cancer cells with extra-centrosomes de-clustering in mitosis, and mitotic failure leading to cell death. According to previous findings observed by confocal imaging of fixed cells, PJ-34 exclusively eradicated cancer cells with multi-centrosomes without impairing normal cells undergoing mitosis with two centrosomes and bi-focal spindles. This cytotoxic activity of PJ-34 was not shared by other potent PARP1 inhibitors, and was observed in PARP1 deficient MEF harboring extracentrosomes, suggesting its independency of PARP1 inhibition. Live confocal imaging offered a useful tool for identifying new molecules eradicating cells during mitosis.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Genetics, Neoplastic Processes, Pharmacologic Actions, Live confocal imaging, Extra-centrosomes clustering/de-clustering, Mitotic Catastrophe cell death, PJ-34, myocardial infarction, microscopy, imaging
50568
Play Button
Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model
Authors: Donna Cvetković, Cameron Glenn-Franklin Goertzen, Moshmi Bhattacharya.
Institutions: University of Western Ontario, University of Western Ontario, Lawson Health Research Institute.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Medicine, Issue 88, Breast cancer, cell invasion, extracellular matrix (ECM), three-dimensional (3D) cultures, immunocytochemistry, Matrigel, basement membrane matrix
51341
Play Button
Three Dimensional Cultures: A Tool To Study Normal Acinar Architecture vs. Malignant Transformation Of Breast Cells
Authors: Anupama Pal, Celina G. Kleer.
Institutions: University of Michigan Comprehensive Cancer Center, University of Michigan Comprehensive Cancer Center.
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior1. However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system2,3. Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D4. 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved3. One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D6,7. Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
Medicine, Issue 86, pathological conditions, signs and symptoms, neoplasms, three dimensional cultures, Matrigel, breast cells, malignant phenotype, signaling
51311
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
DNA Vector-based RNA Interference to Study Gene Function in Cancer
Authors: Daniel B. Stovall, Meimei Wan, Qiang Zhang, Purnima Dubey, Guangchao Sui.
Institutions: Wake Forest University School of Medicine, Wake Forest University School of Medicine.
RNA interference (RNAi) inhibits gene expression by specifically degrading target mRNAs. Since the discovery of double-stranded small interference RNA (siRNA) in gene silencing1, RNAi has become a powerful research tool in gene function studies. Compared to genetic deletion, RNAi-mediated gene silencing possesses many advantages, such as the ease with which it is carried out and its suitability to most cell lines. Multiple studies have demonstrated the applications of RNAi technology in cancer research. In particular, the development of the DNA vector-based technology to produce small hairpin RNA (shRNA) driven by the U6 or H1 promoter has made long term and inducible gene silencing possible2,3. Its use in combination with genetically engineered viral vectors, such as lentivirus, facilitates high efficiencies of shRNA delivery and/or integration into genomic DNA for stable shRNA expression. We describe a detailed procedure using the DNA vector-based RNAi technology to determine gene function, including construction of lentiviral vectors expressing shRNA, lentivirus production and cell infection, and functional studies using a mouse xenograft model. Various strategies have been reported in generating shRNA constructs. The protocol described here employing PCR amplification and a 3-fragment ligation can be used to directly and efficiently generate shRNA-containing lentiviral constructs without leaving any extra nucleotide adjacent to a shRNA coding sequence. Since the shRNA-expression cassettes created by this strategy can be cut out by restriction enzymes, they can be easily moved to other vectors with different fluorescent or antibiotic markers. Most commercial transfection reagents can be used in lentivirus production. However, in this report, we provide an economic method using calcium phosphate precipitation that can achieve over 90% transfection efficiency in 293T cells. Compared to constitutive shRNA expression vectors, an inducible shRNA system is particularly suitable to knocking down a gene essential to cell proliferation. We demonstrate the gene silencing of Yin Yang 1 (YY1), a potential oncogene in breast cancer4,5, by a Tet-On inducible shRNA system and its effects on tumor formation. Research using lentivirus requires review and approval of a biosafety protocol by the Biosafety Committee of a researcher's institution. Research using animal models requires review and approval of an animal protocol by the Animal Care and Use Committee (ACUC) of a researcher's institution.
Cancer Biology, Issue 64, Medicine, Genetics, RNAi, shRNA, gene silencing, mouse xenograft, tumor formation
4129
Play Button
Multi-modal Imaging of Angiogenesis in a Nude Rat Model of Breast Cancer Bone Metastasis Using Magnetic Resonance Imaging, Volumetric Computed Tomography and Ultrasound
Authors: Tobias Bäuerle, Dorde Komljenovic, Martin R. Berger, Wolfhard Semmler.
Institutions: German Cancer Research Center, Heidelberg, Germany, German Cancer Research Center, Heidelberg, Germany.
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated, respectively. DCE-US allows for real-time imaging of vascularization in bone metastases after injection of microbubbles7. In conclusion, in a model of site-specific breast cancer bone metastases multi-modal imaging techniques including MRI, VCT and US offer complementary information on morphology and functional parameters of angiogenesis in these skeletal lesions.
Cancer Biology, Issue 66, Medicine, Physiology, Physics, bone metastases, animal model, angiogenesis, imaging, magnetic resonance imaging, MRI, volumetric computed tomography, ultrasound
4178
Play Button
Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures
Authors: Katharina Schallmoser, Dirk Strunk.
Institutions: Medical University of Graz, Austria.
Platelet derived growth factors have been shown to stimulate cell proliferation efficiently in vivo1,2 and in vitro. This effect has been reported for mesenchymal stromal cells (MSCs), fibroblasts and endothelial colony-forming cells with platelets activated by thrombin3-5 or lysed by freeze/thaw cycles6-14 before the platelet releasate is added to the cell culture medium. The trophic effect of platelet derived growth factors has already been tested in several trials for tissue engineering and regenerative therapy.1,15-17 Varying efficiency is considered to be at least in part due to individually divergent concentrations of growth factors18,19 and a current lack of standardized protocols for platelet preparation.15,16 This protocol presents a practicable procedure to generate a pool of human platelet lysate (pHPL) derived from routinely produced platelet rich plasma (PRP) of forty to fifty single blood donations. By several freeze/thaw cycles the platelet membranes are damaged and growth factors are efficiently released into the plasma. Finally, the platelet fragments are removed by centrifugation to avoid extensive aggregate formation and deplete potential antigens. The implementation of pHPL into standard culture protocols represents a promising tool for further development of cell therapeutics propagated in an animal protein-free system.
Cellular Biology, Issue 32, Pooled human platelet lysate (pHPL), platelet derived growth factors (PDGFs), cell culture, stem cells
1523
Play Button
Monitoring Immune Cells Trafficking Fluorescent Prion Rods Hours after Intraperitoneal Infection
Authors: Theodore E. Johnson, Brady A. Michel, Crystal Meyerett, Angela Duffy, Anne Avery, Steven Dow, Mark D. Zabel.
Institutions: Colorado State University.
Presence of an abnormal form a host-encoded prion protein (PrPC) that is protease resistant, pathologic and infectious characterizes prion diseases such as Chronic Wasting Disease (CWD) of cervids and scrapie in sheep. The Prion hypothesis asserts that this abnormal conformer constitutes most or all of the infectious prion. The role of the immune system in early events in peripheral prion pathogenesis has been convincingly demonstrated for CWD and scrapie 1-3. Transgenic and pharmacologic studies in mice revealed an important role of the Complement system in retaining and replicating prions early after infection 4-6. In vitro and in vivo studies have also observed prion retention by dendritic cells 7-10, although their role in trafficking remains unclear 11-16. Macrophages have similarly been implicated in early prion pathogenesis, but these studies have focused on events occurring weeks after infection 3,11,17. These prior studies also suffer from the problem of differentiating between endogenous PrPC and infectious prions. Here we describe a semiquantitative, unbiased approach for assessing prion uptake and trafficking from the inoculation site by immune cells recruited there. Aggregated prion rods were purified from infected brain homogenate by detergent solubilization of non-aggregated proteins and ultracentrifugation through a sucrose cushion. Polyacrylamide gel electrophoresis, coomassie blue staining and western blotting confirmed recovery of highly enriched prion rods in the pelleted fraction. Prion rods were fluorochrome-labeled then injected intraperitoneally into mice. Two hours later immune cells from peritoneal lavage fluid, spleen and mediastinal and mesenteric lymph nodes were assayed for prion rod retention and cell subsets identified by multicolor flow cytometry using markers for monocytes, neutrophils, dendritic cells, macrophages and B and T cells. This assay allows for the first time direct monitoring of immune cells acquiring and trafficking prions in vivo within hours after infection. This assay also clearly differentiates infectious, aggregated prions from PrPC normally expressed on host cells, which can be difficult and lead to data interpretation problems in other assay systems. This protocol can be adapted to other inoculation routes (oral, intravenous, intranervous and subcutaneous, e.g.) and antigens (conjugated beads, bacterial, viral and parasitic pathogens and proteins, egg) as well.
Immunology, Issue 45, prions, mouse, trafficking, intraperitoneal, lymph nodes, flow cytometry
2349
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
50645
Play Button
PRP as a New Approach to Prevent Infection: Preparation and In vitro Antimicrobial Properties of PRP
Authors: Hongshuai Li, Bingyun Li.
Institutions: West Virginia University , University of Pittsburgh, WVNano Initiative, Mary Babb Randolph Cancer Center.
Implant-associated infection is becoming more and more challenging to the healthcare industry worldwide due to increasing antibiotic resistance, transmission of antibiotic resistant bacteria between animals and humans, and the high cost of treating infections. In this study, we disclose a new strategy that may be effective in preventing implant-associated infection based on the potential antimicrobial properties of platelet-rich plasma (PRP). Due to its well-studied properties for promoting healing, PRP (a biological product) has been increasingly used for clinical applications including orthopaedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, sports medicine, etc. PRP could be an advanced alternative to conventional antibiotic treatments in preventing implant-associated infections. The use of PRP may be advantageous compared to conventional antibiotic treatments since PRP is less likely to induce antibiotic resistance and PRP's antimicrobial and healing-promoting properties may have a synergistic effect on infection prevention. It is well known that pathogens and human cells are racing for implant surfaces, and PRP's properties of promoting healing could improve human cell attachment thereby reducing the odds for infection. In addition, PRP is inherently biocompatible, and safe and free from the risk of transmissible diseases. For our study, we have selected several clinical bacterial strains that are commonly found in orthopaedic infections and examined whether PRP has in vitro antimicrobial properties against these bacteria. We have prepared PRP using a twice centrifugation approach which allows the same platelet concentration to be obtained for all samples. We have achieved consistent antimicrobial findings and found that PRP has strong in vitro antimicrobial properties against bacteria like methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A Streptococcus, and Neisseria gonorrhoeae. Therefore, the use of PRP may have the potential to prevent infection and to reduce the need for costly post-operative treatment of implant-associated infections.
Infection, Issue 74, Infectious Diseases, Immunology, Microbiology, Medicine, Cellular Biology, Molecular Biology, Bacterial Infections and Mycoses, Musculoskeletal Diseases, Biological Factors, Platelet-rich plasma, bacterial infection, antimicrobial, kill curve assay, Staphylococcus aureus, clinical isolate, blood, cells, clinical techniques
50351
Play Button
Protein Misfolding Cyclic Amplification of Prions
Authors: Samuel E. Saunders, Jason C. Bartz, Ronald A. Shikiya.
Institutions: University of Nebraska at Lincoln, Creighton University.
Prions are infectious agents that cause the inevitably fatal transmissible spongiform encephalopathy (TSE) in animals and humans9,18. The prion protein has two distinct isoforms, the non-infectious host-encoded protein (PrPC) and the infectious protein (PrPSc), an abnormally-folded isoform of PrPC 8. One of the challenges of working with prion agents is the long incubation period prior to the development of clinical signs following host inoculation13. This traditionally mandated long and expensive animal bioassay studies. Furthermore, the biochemical and biophysical properties of PrPSc are poorly characterized due to their unusual conformation and aggregation states. PrPSc can seed the conversion of PrPC to PrPSc in vitro14. PMCA is an in vitro technique that takes advantage of this ability using sonication and incubation cycles to produce large amounts of PrPSc, at an accelerated rate, from a system containing excess amounts of PrPC and minute amounts of the PrPSc seed19. This technique has proven to effectively recapitulate the species and strain specificity of PrPSc conversion from PrPC, to emulate prion strain interference, and to amplify very low levels of PrPSc from infected tissues, fluids, and environmental samples6,7,16,23 . This paper details the PMCA protocol, including recommendations for minimizing contamination, generating consistent results, and quantifying those results. We also discuss several PMCA applications, including generation and characterization of infectious prion strains, prion strain interference, and the detection of prions in the environment.
Immunology, Issue 69, Molecular Biology, Genetics, Virology, prion, prion detection, sonication, PrPC, PrPSc, strain, in vitro, PMCA, sPMCA
4075
Play Button
Procedures for Identifying Infectious Prions After Passage Through the Digestive System of an Avian Species
Authors: Justin W Fischer, Tracy A Nichols, Gregory E Phillips, Kurt C VerCauteren.
Institutions: USDA.
Infectious prion (PrPRes) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases1. Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal2,3 as well as from environmental sources4-6. Scavengers and carnivores have potential to translocate PrPRes material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrPRes material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger7. We describe procedures used to document passage of PrPRes material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice.
Infection, Issue 81, American crows, feces, mouse model, prion detection, PrPRes, scrapie, TSE transmission
50853
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
3040
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
52029
Play Button
Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer
Authors: Elizabeth S. Nakasone, Hanne A. Askautrud, Mikala Egeblad.
Institutions: Watson School of Biological Sciences, Cold Spring Harbor Laboratory, University of Oslo and Oslo University Hospital.
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Cancer Biology, Issue 73, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Oncology, Pharmacology, Surgery, Tumor Microenvironment, Intravital imaging, chemotherapy, Breast cancer, time-lapse, mouse models, cancer cell death, stromal cell migration, cancer, imaging, transgenic, animal model
50088
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Models of Bone Metastasis
Authors: J. Preston Campbell, Alyssa R. Merkel, S. Kathryn Masood-Campbell, Florent Elefteriou, Julie A. Sterling.
Institutions: Vanderbilt University, Vanderbilt University, Tennessee Valley Healthcare System (VISN 9), Vanderbilt University, Vanderbilt University.
Bone metastases are a common occurrence in several malignancies, including breast, prostate, and lung. Once established in bone, tumors are responsible for significant morbidity and mortality1. Thus, there is a significant need to understand the molecular mechanisms controlling the establishment, growth and activity of tumors in bone. Several in vivo models have been established to study these events and each has specific benefits and limitations. The most commonly used model utilizes intracardiac inoculation of tumor cells directly into the arterial blood supply of athymic (nude) BalbC mice. This procedure can be applied to many different tumor types (including PC-3 prostate cancer, lung carcinoma, and mouse mammary fat pad tumors); however, in this manuscript we will focus on the breast cancer model, MDA-MB-231. In this model we utilize a highly bone-selective clone, originally derived in Dr. Mundy's group in San Antonio2, that has since been transfected for GFP expression and re-cloned by our group3. This clone is a bone metastatic variant with a high rate of osteotropism and very little metastasis to lung, liver, or adrenal glands. While intracardiac injections are most commonly used for studies of bone metastasis2, in certain instances intratibial4 or mammary fat pad injections are more appropriate. Intracardiac injections are typically performed when using human tumor cells with the goal of monitoring later stages of metastasis, specifically the ability of cancer cells to arrest in bone, survive, proliferate, and establish tumors that develop into cancer-induced bone disease. Intratibial injections are performed if focusing on the relationship of cancer cells and bone after a tumor has metastasized to bone, which correlates roughly to established metastatic bone disease. Neither of these models recapitulates early steps in the metastatic process prior to embolism and entry of tumor cells into the circulation. If monitoring primary tumor growth or metastasis from the primary site to bone, then mammary fat pad inoculations are usually preferred; however, very few tumor cell lines will consistently metastasize to bone from the primary site, with 4T1 bone-preferential clones, a mouse mammary carcinoma, being the exception 5,6. This manuscript details inoculation procedures and highlights key steps in post inoculation analyses. Specifically, it includes cell culture, tumor cell inoculation procedures for intracardiac and intratibial inoculations, as well as brief information regarding weekly monitoring by x-ray, fluorescence and histomorphometric analyses.
Medicine, Issue 67, Mouse models of bone metastasis, breast cancer, cancer biology, intracardiac injections, intratibial injections, tumor cells
4260
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.