JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Maternal serum heme-oxygenase-1 (HO-1) concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus.
PLoS ONE
Heme oxygenase-1 (HO-1) concentrations have been recently reported to be elevated in impaired glucose tolerance and type 2 diabetes mellitus (T2DM). However, no study has examined the association between HO-1 concentrations and gestational diabetes mellitus (GDM).
Authors: Robert V. Intine, Ansgar S. Olsen, Michael P. Sarras Jr..
Published: 02-28-2013
ABSTRACT
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined. We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.
21 Related JoVE Articles!
Play Button
Bioluminescence Imaging of Heme Oxygenase-1 Upregulation in the Gua Sha Procedure
Authors: Kenneth K. Kwong, Lenuta Kloetzer, Kelvin K. Wong, Jia-Qian Ren, Braden Kuo, Yan Jiang, Y. Iris Chen, Suk-Tak Chan, Geoffrey S. Young, Stephen T.C. Wong.
Institutions: Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, The Methodist Hospital Research Institute, The Methodist Hospital, Weill Cornell Medical College, Bejing University of Chinese Medicine, The Hong Kong Polytechnic University, Brigham and Women's Hospital, Harvard Medical School.
Gua Sha is a traditional Chinese folk therapy that employs skin scraping to cause subcutaneous microvascular blood extravasation and bruises. The protocol for bioluminescent optical imaging of HO-1-luciferase transgenic mice reported in this manuscript provides a rapid in vivo assay of the upregulation of the heme oxygenase-1 (HO-1) gene expression in response to the Gua Sha procedure. HO-1 has long been known to provide cytoprotection against oxidative stress. The upregulation of HO-1, assessed by the bioluminescence output, is thought to represent an antioxidative response to circulating hemoglobin products released by Gua Sha. Gua Sha was administered by repeated strokes of a smooth spoon edge over lubricated skin on the back or other targeted body part of the transgenic mouse until petechiae (splinter hemorrhages) or ecchymosis (bruises) indicative of extravasation of blood from subcutaneous capillaries was observed. After Gua Sha, bioluminescence imaging sessions were carried out daily for several days to follow the dynamics of HO-1 expression in multiple internal organs.
Medicine, Issue 30, Gua Sha, blood extravasation, bruises, heme oxygenase-1, gene expression, systems biology, small animal molecular imaging, optical and bioluminescence imaging, HO-1-luciferase transgenic mice, Chinese folk therapy
1385
Play Button
Human Pancreatic Islet Isolation: Part II: Purification and Culture of Human Islets
Authors: Meirigeng Qi, Barbara Barbaro, Shusen Wang, Yong Wang, Mike Hansen, Jose Oberholzer.
Institutions: University of Illinois, Chicago.
Management of Type 1 diabetes is burdensome, both to the individual and society, costing over 100 billion dollars annually. Despite the widespread use of glucose monitoring and new insulin formulations, many individuals still develop devastating secondary complications. Pancreatic islet transplantation can restore near normal glucose control in diabetic patients 1, without the risk of serious hypoglycemic episodes that are associated with intensive insulin therapy. Providing sufficient islet mass is important for successful islet transplantation. However, donor characteristics, organ procurement and preservation affect the isolation outcome 2. At University of Illinois at Chicago (UIC) we developed a successful isolation protocol with an improved purification gradient 3. The program started in January 2004 and more than 300 isolations were performed up to November 2008. The pancreata were sent in cold preservation solutions (UW, University of Wisconsin or HTK, Histidine-Tryptophan Ketoglutarate) 4-7 to the Cell Isolation Laboratory at UIC for islet isolation. Pancreatic islets were isolated using the UIC method, which is a modified version of the method originally described by Ricordi et al 8. As described in Part I: Digestion and Collection of Pancreatic Tissue, human pancreas was trimmed, cannulated, perfused, and digested. After collection and at least 30 minutes of incubation in UW solution, the tissue was loaded in the cell separator (COBE 2991, Cobe, Lakewood, CO) for purification 3. Following purification, islet yield (expressed as islet equivalents, IEQ), tissue volume, and purity was determined according to standard methods 9. Isolated islets were cultured in CMRL-1066 media (Mediatech, Herndon, VA), supplemented with 1.5% human albumin, 0.1% insulin-transferrin-selenium (ITS), 1 ml of Ciprofloxacin, 5 ml o f 1M HEPES, and 14.5 ml of 7.5% Sodium Bicarbonate in T175 flasks at 37°C overnight culture before islets were transplanted or used for research.
Medicine, Issue 27, Human islets, Type 1 diabetes, human islet purification, human islet transplantation
1343
Play Button
A Model of Chronic Nutrient Infusion in the Rat
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Institutions: CRCHUM, University of Montreal.
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
Biomedical Engineering, Issue 78, Medicine, Anatomy, Physiology, Basic Protocols, Surgery, Metabolic Diseases, Infusions, Intravenous, Infusion Pumps, Glucolipotoxicity, Rat, Infusion, Glucose, Intralipid, Catheter, canulation, canula, diabetes, animal model
50267
Play Button
Transabdominal Ultrasound for Pregnancy Diagnosis in Reeves' Muntjac Deer
Authors: Kelly D. Walton, Erin McNulty, Amy V. Nalls, Candace K. Mathiason.
Institutions: Colorado State University.
Reeves' muntjac deer (Muntiacus reevesi) are a small cervid species native to southeast Asia, and are currently being investigated as a potential model of prion disease transmission and pathogenesis. Vertical transmission is an area of interest among researchers studying infectious diseases, including prion disease, and these investigations require efficient methods for evaluating the effects of maternal infection on reproductive performance. Ultrasonographic examination is a well-established tool for diagnosing pregnancy and assessing fetal health in many animal species1-7, including several species of farmed cervids8-19, however this technique has not been described in Reeves' muntjac deer. Here we describe the application of transabdominal ultrasound to detect pregnancy in muntjac does and to evaluate fetal growth and development throughout the gestational period. Using this procedure, pregnant animals were identified as early as 35 days following doe-buck pairing and this was an effective means to safely monitor the pregnancy at regular intervals. Future goals of this work will include establishing normal fetal measurement references for estimation of gestational age, determining sensitivity and specificity of the technique for diagnosing pregnancy at various stages of gestation, and identifying variations in fetal growth and development under different experimental conditions.
Medicine, Issue 83, Ultrasound, Reeves' muntjac deer, Muntiacus reevesi, fetal development, fetal growth, captive cervids
50855
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
51839
Play Button
Assessment and Evaluation of the High Risk Neonate: The NICU Network Neurobehavioral Scale
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Institutions: Brown University, Women & Infants Hospital of Rhode Island, University of Massachusetts, Boston.
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
Behavior, Issue 90, NICU Network Neurobehavioral Scale, NNNS, High risk infant, Assessment, Evaluation, Prediction, Long term outcome
3368
Play Button
Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction
Authors: Ryan Hodges, Masayuki Endo, Andre La Gerche, Elisenda Eixarch, Philip DeKoninck, Vessilina Ferferieva, Jan D'hooge, Euan M. Wallace, Jan Deprest.
Institutions: University Hospitals Leuven, Monash University, Victoria, Australia, Katholieke Universiteit Leuven, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER).
Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is consistent with current clinical practice and is therefore useful in a translational research setting.
Medicine, Issue 76, Developmental Biology, Biomedical Engineering, Molecular Biology, Anatomy, Physiology, Cardiology, Fetal Therapies, Obstetric Surgical Procedures, Fetal Development, Surgical Procedures, Operative, intrauterine growth restriction, fetal echocardiography, Doppler ultrasound, fetal hemodynamics, animal model, clinical techniques
50392
Play Button
Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model
Authors: Stefanie Grafmüller, Pius Manser, Harald F. Krug, Peter Wick, Ursula von Mandach.
Institutions: University Hospital Zurich, EMPA Swiss Federal Laboratories for Materials Testing and Research, University of Bern.
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Biomedical Engineering, Issue 76, Medicine, Bioengineering, Anatomy, Physiology, Molecular Biology, Biochemistry, Biophysics, Pharmacology, Obstetrics, Nanotechnology, Placenta, Pharmacokinetics, Nanomedicine, humans, ex vivo perfusion, perfusion, biological barrier, xenobiotics, nanomaterials, clinical model
50401
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
50324
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
51445
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
50374
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
Isolation of Human Islets from Partially Pancreatectomized Patients
Authors: Gregor Bötticher, Dorothèe Sturm, Florian Ehehalt, Klaus P. Knoch, Stephan Kersting, Robert Grützmann, Gustavo B. Baretton, Michele Solimena, Hans D. Saeger.
Institutions: University Hospital Carl Gustav Carus, University of Technology Dresden, Paul Langerhans Institute Dresden, University Hospital Carl Gustav Carus, University of Technology Dresden.
Investigations into the pathogenesis of type 2 diabetes and islets of Langerhans malfunction 1 have been hampered by the limited availability of type 2 diabetic islets from organ donors2. Here we share our protocol for isolating islets from human pancreatic tissue obtained from type 2 diabetic and non-diabetic patients who have undergone partial pancreatectomy due to different pancreatic diseases (benign or malignant pancreatic tumors, chronic pancreatitis, and common bile duct or duodenal tumors). All patients involved gave their consent to this study, which had also been approved by the local ethics committee. The surgical specimens were immediately delivered to the pathologist who selected soft and healthy appearing pancreatic tissue for islet isolation, retaining the damaged tissue for diagnostic purposes. We found that to isolate more than 1,000 islets, we had to begin with at least 2 g of pancreatic tissue. Also essential to our protocol was to visibly distend the tissue when injecting the enzyme-containing media and subsequently mince it to aid digestion by increasing the surface area. To extend the applicability of our protocol to include the occasional case in which a large amount (>15g) of human pancreatic tissue is available , we used a Ricordi chamber (50 ml) to digest the tissue. During digestion, we manually shook the Ricordi chamber3 at an intensity that varied by specimen according to its level of tissue fibrosis. A discontinous Ficoll gradient was then used to separate the islets from acinar tissue. We noted that the tissue pellet should be small enough to be homogenously resuspended in Ficoll medium with a density of 1.125 g/ml. After isolation, we cultured the islets under stress free conditions (no shaking or rotation) with 5% CO2 at 37 °C for at least 48 h in order to facilitate their functional recovery. Widespread application of our protocol and its future improvement could enable the timely harvesting of large quantities of human islets from diabetic and clinically matched non-diabetic subjects, greatly advancing type 2 diabetes research.
Medicine, Issue 53, human islets, Diabetes mellitus, partial pancreatectomy, human islet isolation
2962
Play Button
Hyperinsulinemic-Euglycemic Clamp in the Conscious Rat
Authors: Curtis C. Hughey, Dustin S. Hittel, Virginia L. Johnsen, Jane Shearer.
Institutions: University of Calgary, University of Calgary.
Type 2 diabetes (T2D) is rapidly rising in prevalence. Characterized by either inadequate insulin production or the inability to utilize insulin produced, T2D results in elevated blood glucose levels. The "gold-standard" in assessing insulin sensitivity is a hyperinsulinemic-euglycemic clamp or insulin clamp. In this procedure, insulin is infused at a constant rate resulting in a drop in blood glucose. To maintain blood glucose at a constant level, exogenous glucose (D50) is infused into the venous circulation. The amount of glucose infused to maintain homeostasis is indicative of insulin sensitivity. Here, we show the basic clamp procedure in the chronically catheterized, unrestrained, conscious rat. This model allows blood to be collected with minimal stress to the animal. Following the induction of anesthesia, a midline incision is made and the left common carotid artery and right jugular vein are catheterized. Inserted catheters are flushed with heparinized saline, then exteriorized and secured. Animals are allowed to recover for 4-5 days prior to experiments, with weight gain monitored daily. Only those animals who regain weight to pre-surgery levels are used for experiments. On the day of the experiment, rats are fasted and connected to pumps containing insulin and D50. Baseline glucose is assessed from the arterial line and used a benchmark throughout the experiment (euglycemia). Following this, insulin is infused at a constant rate into the venous circulation. To match the drop in blood glucose, D50 is infused. If the rate of D50 infusion is greater than the rate of uptake, a rise in glucose will occur. Similarly, if the rate is insufficient to match whole body glucose uptake, a drop will occur. Titration of glucose continues until stable glucose readings are achieved. Glucose levels and glucose infusion rates during this stable period are recorded and reported. Results provide an index of whole body insulin sensitivity. The technique can be refined to meet specific experimental requirements. It is further enhanced by the use of radioactive tracers that can determine tissue specific insulin-stimulated glucose uptake as well as whole body glucose turnover.
Medicine, Issue 48, Metabolism, Diabetes, Insulin Sensitivity, Methodology
2432
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
2096
Play Button
Accelerated Type 1 Diabetes Induction in Mice by Adoptive Transfer of Diabetogenic CD4+ T Cells
Authors: Gregory Berry, Hanspeter Waldner.
Institutions: Pennsylvania State University College of Medicine.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.
Immunology, Issue 75, Medicine, Cellular Biology, Molecular Biology, Microbiology, Anatomy, Physiology, Biomedical Engineering, Genetics, Surgery, Type 1 diabetes, CD4+ T cells, diabetogenic T cells, T cell transfer, diabetes induction method, diabetes, T cells, isolation, cell sorting, FACS, transgenic mice, animal model
50389
Play Button
Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment
Authors: Tamika K. Samuel, Jason W. Sinclair, Katherine L. Pinter, Iqbal Hamza.
Institutions: University of Maryland, University of Maryland.
In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment.
Molecular Biology, Issue 90, C. elegans, axenic media, transgenics, microparticle bombardment, heme, nutrition
51796
Play Button
Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets
Authors: Patrick T. Fueger, Angelina M. Hernandez, Yi-Chun Chen, E. Scott Colvin.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes. Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa. By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.
Medicine, Issue 64, Physiology, beta cell, gene expression, islet, diabetes, insulin secretion, proliferation, adenovirus, rat
4080
Play Button
Regulatory T cells: Therapeutic Potential for Treating Transplant Rejection and Type I Diabetes
Authors: Jeffry A. Bluestone.
Institutions: University of California, San Francisco - UCSF.
Issue 7, Immunology, Pancreatic Islets, Cell Culture, Diabetes, Ficoll Gradient, Translational Research
257
Play Button
Investigating the Immunological Mechanisms Underlying Organ Transplant Rejection
Authors: Sang Mo Kang.
Institutions: University of California, San Francisco - UCSF.
Issue 7, Immunology, Heterotopic Heart Transplant, Small Bowel Transplant, Transplant Rejection, T regs, Diabetes, Autoimmune Disease, Translational Research
256
Play Button
Improving IV Insulin Administration in a Community Hospital
Authors: Michael C. Magee.
Institutions: Wyoming Medical Center.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes.1-4 The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes."5 It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control.6 Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p=0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p<0.001). From this pivotal trial and two others,7,8 Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.
Medicine, Issue 64, Physiology, Computerized glucose management, Endotool, hypoglycemia, hyperglycemia, diabetes, IV insulin, paper protocol, glucose control
3705
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.