JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
MetaSee: an interactive and extendable visualization toolbox for metagenomic sample analysis and comparison.
The NGS (next generation sequencing)-based metagenomic data analysis is becoming the mainstream for the study of microbial communities. Faced with a large amount of data in metagenomic research, effective data visualization is important for scientists to effectively explore, interpret and manipulate such rich information. The visualization of the metagenomic data, especially multi-sample data, is one of the most critical challenges. The different data sample sources, sequencing approaches and heterogeneous data formats make robust and seamless data visualization difficult. Moreover, researchers have different focuses on metagenomic studies: taxonomical or functional, sample-centric or genome-centric, single sample or multiple samples, etc. However, current efforts in metagenomic data visualization cannot fulfill all of these needs, and it is extremely hard to organize all of these visualization effects in a systematic manner. An extendable, interactive visualization tool would be the method of choice to fulfill all of these visualization needs. In this paper, we have present MetaSee, an extendable toolbox that facilitates the interactive visualization of metagenomic samples of interests. The main components of MetaSee include: (I) a core visualization engine that is composed of different views for comparison of multiple samples: Global view, Phylogenetic view, Sample view and Taxa view, as well as link-out for more in-depth analysis; (II) front-end user interface with real metagenomic models that connect to the above core visualization engine and (III) open-source portal for the development of plug-ins for MetaSee. This integrative visualization tool not only provides the visualization effects, but also enables researchers to perform in-depth analysis of the metagenomic samples of interests. Moreover, its open-source portal allows for the design of plug-ins for MetaSee, which would facilitate the development of any additional visualization effects.
Authors: Phanidhar Kukutla, Matthew Steritz, Jiannong Xu.
Published: 04-07-2013
The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.
22 Related JoVE Articles!
Play Button
Performing Behavioral Tasks in Subjects with Intracranial Electrodes
Authors: Matthew A. Johnson, Susan Thompson, Jorge Gonzalez-Martinez, Hyun-Joo Park, Juan Bulacio, Imad Najm, Kevin Kahn, Matthew Kerr, Sridevi V. Sarma, John T. Gale.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Johns Hopkins University.
Patients having stereo-electroencephalography (SEEG) electrode, subdural grid or depth electrode implants have a multitude of electrodes implanted in different areas of their brain for the localization of their seizure focus and eloquent areas. After implantation, the patient must remain in the hospital until the pathological area of brain is found and possibly resected. During this time, these patients offer a unique opportunity to the research community because any number of behavioral paradigms can be performed to uncover the neural correlates that guide behavior. Here we present a method for recording brain activity from intracranial implants as subjects perform a behavioral task designed to assess decision-making and reward encoding. All electrophysiological data from the intracranial electrodes are recorded during the behavioral task, allowing for the examination of the many brain areas involved in a single function at time scales relevant to behavior. Moreover, and unlike animal studies, human patients can learn a wide variety of behavioral tasks quickly, allowing for the ability to perform more than one task in the same subject or for performing controls. Despite the many advantages of this technique for understanding human brain function, there are also methodological limitations that we discuss, including environmental factors, analgesic effects, time constraints and recordings from diseased tissue. This method may be easily implemented by any institution that performs intracranial assessments; providing the opportunity to directly examine human brain function during behavior.
Behavior, Issue 92, Cognitive neuroscience, Epilepsy, Stereo-electroencephalography, Subdural grids, Behavioral method, Electrophysiology
Play Button
A High Throughput Screen for Biomining Cellulase Activity from Metagenomic Libraries
Authors: Keith Mewis, Marcus Taupp, Steven J. Hallam.
Institutions: University of British Columbia - UBC.
Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production 1. Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils 2, buffalo rumen 3 and the termite hind-gut 4 using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood 5). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio 6. Other methods have been reported 7,8 but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate 9. Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction 10. The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system.
Microbiology, Issue 48, Cellulase, cellulose, DNP-cellobioside, metagenomics, metagenome, environmental genomics, functional metagenomics
Play Button
Separation of Single-stranded DNA, Double-stranded DNA and RNA from an Environmental Viral Community Using Hydroxyapatite Chromatography
Authors: Douglas W. Fadrosh, Cynthia Andrews-Pfannkoch, Shannon J. Williamson.
Institutions: The J. Craig Venter Institute, The J. Craig Venter Institute.
Viruses, particularly bacteriophages (phages), are the most numerous biological entities on Earth1,2. Viruses modulate host cell abundance and diversity, contribute to the cycling of nutrients, alter host cell phenotype, and influence the evolution of both host cell and viral communities through the lateral transfer of genes 3. Numerous studies have highlighted the staggering genetic diversity of viruses and their functional potential in a variety of natural environments. Metagenomic techniques have been used to study the taxonomic diversity and functional potential of complex viral assemblages whose members contain single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and RNA genotypes 4-9. Current library construction protocols used to study environmental DNA-containing or RNA-containing viruses require an initial nuclease treatment in order to remove nontargeted templates 10. However, a comprehensive understanding of the collective gene complement of the virus community and virus diversity requires knowledge of all members regardless of genome composition. Fractionation of purified nucleic acid subtypes provides an effective mechanism by which to study viral assemblages without sacrificing a subset of the community’s genetic signature. Hydroxyapatite, a crystalline form of calcium phosphate, has been employed in the separation of nucleic acids, as well as proteins and microbes, since the 1960s11. By exploiting the charge interaction between the positively-charged Ca2+ ions of the hydroxyapatite and the negatively charged phosphate backbone of the nucleic acid subtypes, it is possible to preferentially elute each nucleic acid subtype independent of the others. We recently employed this strategy to independently fractionate the genomes of ssDNA, dsDNA and RNA-containing viruses in preparation of DNA sequencing 12. Here, we present a method for the fractionation and recovery of ssDNA, dsDNA and RNA viral nucleic acids from mixed viral assemblages using hydroxyapatite chromotography.
Immunology, Issue 55, Hydroxyapatite, single-stranded DNA, double-stranded DNA, RNA, DNA, chromatography, viral ecology, virus, bacteriophage
Play Button
An Analytical Tool-box for Comprehensive Biochemical, Structural and Transcriptome Evaluation of Oral Biofilms Mediated by Mutans Streptococci
Authors: Marlise I. Klein, Jin Xiao, Arne Heydorn, Hyun Koo.
Institutions: University of Rochester Medical Center, Sichuan University, Glostrup Hospital, Glostrup, Denmark, University of Rochester Medical Center.
Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition 1, 2. In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci 3. The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate 3. Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously 4, 5. Moreover, it allows temporal evaluation, inclusion of various microbial species 5 and assessment of the effects of distinct experimental conditions (e.g. treatments 6; comparison of knockout mutants vs. parental strain 5; carbohydrates availability 7). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.
Microbiology, Issue 47, Extracellular matrix, polysaccharides, biofilm, mutans streptococci, glucosyltransferases, confocal fluorescence, microarray
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Trajectory Data Analyses for Pedestrian Space-time Activity Study
Authors: Feng Qi, Fei Du.
Institutions: Kean University, University of Wisconsin-Madison.
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission1-3. An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data4. Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation5 involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping6 and density volume rendering7. We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.
Environmental Sciences, Issue 72, Computer Science, Behavior, Infectious Diseases, Geography, Cartography, Data Display, Disease Outbreaks, cartography, human behavior, Trajectory data, space-time activity, GPS, GIS, ArcGIS, spatiotemporal analysis, visualization, segmentation, density surface, density volume, exploratory data analysis, modelling
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Extraction of High Molecular Weight DNA from Microbial Mats
Authors: Benjamin S. Bey, Erin B. Fichot, R. Sean Norman.
Institutions: Arnold School of Public Health, University of South Carolina.
Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA2,3 during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes4,5,6. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A260/280 ratio of 1.6. Furthermore, amplification of 16S rRNA genes7 suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging.
Molecular Biology, Issue 53, Metagenomics, extracellular polymeric substances, DNA extraction, Microbial mats, hypersaline, extreme environment
Play Button
Characterization of Surface Modifications by White Light Interferometry: Applications in Ion Sputtering, Laser Ablation, and Tribology Experiments
Authors: Sergey V. Baryshev, Robert A. Erck, Jerry F. Moore, Alexander V. Zinovev, C. Emil Tripa, Igor V. Veryovkin.
Institutions: Argonne National Laboratory, Argonne National Laboratory, MassThink LLC.
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.
Materials Science, Issue 72, Physics, Ion Beams (nuclear interactions), Light Reflection, Optical Properties, Semiconductor Materials, White Light Interferometry, Ion Sputtering, Laser Ablation, Femtosecond Lasers, Depth Profiling, Time-of-flight Mass Spectrometry, Tribology, Wear Analysis, Optical Profilometry, wear, friction, atomic force microscopy, AFM, scanning electron microscopy, SEM, imaging, visualization
Play Button
Scalable Nanohelices for Predictive Studies and Enhanced 3D Visualization
Authors: Kwyn A. Meagher, Benjamin N. Doblack, Mercedes Ramirez, Lilian P. Davila.
Institutions: University of California Merced, University of California Merced.
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications.  For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately.  To study the effect of local structure on the properties of these complex geometries one must develop realistic models.  To date, software packages are rather limited in creating atomistic helical models.  This work focuses on producing atomistic models of silica glass (SiO2) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of “bulk” silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented.  The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix.  With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions.  The second method involves a more robust code which allows flexibility in modeling nanohelical structures.  This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models.  Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created.  An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material.  In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures.  One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Physics, Issue 93, Helical atomistic models; open-source coding; graphical user interface; visualization software; molecular dynamics simulations; graphical processing unit accelerated simulations.
Play Button
Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons
Authors: Sylvie Sanschagrin, Etienne Yergeau.
Institutions: National Research Council Canada.
One of the major questions in microbial ecology is “who is there?” This question can be answered using various tools, but one of the long-lasting gold standards is to sequence 16S ribosomal RNA (rRNA) gene amplicons generated by domain-level PCR reactions amplifying from genomic DNA. Traditionally, this was performed by cloning and Sanger (capillary electrophoresis) sequencing of PCR amplicons. The advent of next-generation sequencing has tremendously simplified and increased the sequencing depth for 16S rRNA gene sequencing. The introduction of benchtop sequencers now allows small labs to perform their 16S rRNA sequencing in-house in a matter of days. Here, an approach for 16S rRNA gene amplicon sequencing using a benchtop next-generation sequencer is detailed. The environmental DNA is first amplified by PCR using primers that contain sequencing adapters and barcodes. They are then coupled to spherical particles via emulsion PCR. The particles are loaded on a disposable chip and the chip is inserted in the sequencing machine after which the sequencing is performed. The sequences are retrieved in fastq format, filtered and the barcodes are used to establish the sample membership of the reads. The filtered and binned reads are then further analyzed using publically available tools. An example analysis where the reads were classified with a taxonomy-finding algorithm within the software package Mothur is given. The method outlined here is simple, inexpensive and straightforward and should help smaller labs to take advantage from the ongoing genomic revolution.
Molecular Biology, Issue 90, Metagenomics, Bacteria, 16S ribosomal RNA gene, Amplicon sequencing, Next-generation sequencing, benchtop sequencers
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose
Authors: Yongqi Shao, Erika M Arias-Cordero, Wilhelm Boland.
Institutions: Max Planck Institute for Chemical Ecology.
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, 13C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.
Microbiology, Issue 81, Insects, Sequence Analysis, Genetics, Microbial, Bacteria, Lepidoptera, Spodoptera littoralis, stable-isotope-probing (SIP), pyro-sequencing, 13C-glucose, gut, microbiota, bacteria
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
DNA Stable-Isotope Probing (DNA-SIP)
Authors: Eric A. Dunford, Josh D. Neufeld.
Institutions: University of Waterloo.
DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.
Microbiology, Issue 42, DNA stable-isotope probing, microbiology, microbial ecology, cultivation-independent, metagenomics, 16S rRNA gene community analysis, substrates, microbial ecology, enrichment
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
Play Button
Large-Scale Screens of Metagenomic Libraries
Authors: Vinh D. Pham, Tsultrim Palden, Edward F. DeLong.
Institutions: MIT - Massachusetts Institute of Technology.
Metagenomic libraries archive large fragments of contiguous genomic sequences from microorganisms without requiring prior cultivation. Generating a streamlined procedure for creating and screening metagenomic libraries is therefore useful for efficient high-throughput investigations into the genetic and metabolic properties of uncultured microbial assemblages. Here, key protocols are presented on video, which we propose is the most useful format for accurately describing a long process that alternately depends on robotic instrumentation and (human) manual interventions. First, we employed robotics to spot library clones onto high-density macroarray membranes, each of which can contain duplicate colonies from twenty-four 384-well library plates. Automation is essential for this procedure not only for accuracy and speed, but also due to the miniaturization of scale required to fit the large number of library clones into highly dense spatial arrangements. Once generated, we next demonstrated how the macroarray membranes can be screened for genes of interest using modified versions of standard protocols for probe labeling, membrane hybridization, and signal detection. We complemented the visual demonstration of these procedures with detailed written descriptions of the steps involved and the materials required, all of which are available online alongside the video.
Microbiology, issue 4, microbial community, screen
Play Button
Non-invasive 3D-Visualization with Sub-micron Resolution Using Synchrotron-X-ray-tomography
Authors: Michael Heethoff, Lukas Helfen, Peter Cloetens.
Institutions: University of Tubingen, European Synchrotron Radiation Facility.
Little is known about the internal organization of many micro-arthropods with body sizes below 1 mm. The reasons for that are the small size and the hard cuticle which makes it difficult to use protocols of classical histology. In addition, histological sectioning destroys the sample and can therefore not be used for unique material. Hence, a non-destructive method is desirable which allows to view inside small samples without the need of sectioning. We used synchrotron X-ray tomography at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France) to non-invasively produce 3D tomographic datasets with a pixel-resolution of 0.7µm. Using volume rendering software, this allows us to reconstruct the internal organization in its natural state without the artefacts produced by histological sectioning. These date can be used for quantitative morphology, landmarks, or for the visualization of animated movies to understand the structure of hidden body parts and to follow complete organ systems or tissues through the samples.
Developmental Biology, Issue 15, Synchrotron X-ray tomography, Acari, Oribatida, micro-arthropods, non-invasive investigation
Play Button
Facilitating the Analysis of Immunological Data with Visual Analytic Techniques
Authors: David C. Shih, Kevin C. Ho, Kyle M. Melnick, Ronald A. Rensink, Tobias R. Kollmann, Edgardo S. Fortuno III.
Institutions: University of British Columbia, University of British Columbia, University of British Columbia.
Visual analytics (VA) has emerged as a new way to analyze large dataset through interactive visual display. We demonstrated the utility and the flexibility of a VA approach in the analysis of biological datasets. Examples of these datasets in immunology include flow cytometry, Luminex data, and genotyping (e.g., single nucleotide polymorphism) data. Contrary to the traditional information visualization approach, VA restores the analysis power in the hands of analyst by allowing the analyst to engage in real-time data exploration process. We selected the VA software called Tableau after evaluating several VA tools. Two types of analysis tasks analysis within and between datasets were demonstrated in the video presentation using an approach called paired analysis. Paired analysis, as defined in VA, is an analysis approach in which a VA tool expert works side-by-side with a domain expert during the analysis. The domain expert is the one who understands the significance of the data, and asks the questions that the collected data might address. The tool expert then creates visualizations to help find patterns in the data that might answer these questions. The short lag-time between the hypothesis generation and the rapid visual display of the data is the main advantage of a VA approach.
Immunology, Issue 47, Visual analytics, flow cytometry, Luminex, Tableau, cytokine, innate immunity, single nucleotide polymorphism
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.