JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Cell penetrable humanized-VH/V(H)H that inhibit RNA dependent RNA polymerase (NS5B) of HCV.
PLoS ONE
NS5B is pivotal RNA dependent RNA polymerase (RdRp) of HCV and NS5B function interfering halts the virus infective cycle. This work aimed to produce cell penetrable humanized single domain antibodies (SdAb; VH/V(H)H) that interfere with the RdRp activity. Recombinant NS5B?55 of genotype 3a HCV with de novo RNA synthetic activity was produced and used in phage biopanning for selecting phage clones that displayed NS5B?55 bound VH/V(H)H from a humanized-camel VH/V(H)H display library. VH/V(H)H from E. coli transfected with four selected phage clones inhibited RdRp activity when tested by ELISA inhibition using 3di-cytidylate 25 nucleotide directed in vitro RNA synthesis. Deduced amino acid sequences of two clones showed V(H)H hallmark and were designated V(H)H6 and V(H)H24; other clones were conventional VH, designated VH9 and VH13. All VH/V(H)H were linked molecularly to a cell penetrating peptide, penetratin. The cell penetrable VH9, VH13, V(H)H6 and V(H)H24 added to culture of Huh7 cells transfected with JHF-1 RNA of genotype 2a HCV reduced the amounts of RNA intracellularly and in culture medium implying that they inhibited the virus replication. VH/V(H)H mimotopes matched with residues scattered on the polymerase fingers, palm and thumb which were likely juxtaposed to form conformational epitopes. Molecular docking revealed that the antibodies covered the RdRp catalytic groove. The transbodies await further studies for in vivo role in inhibiting HCV replication.
Authors: Songyang Ren, Deisy Contreras, Vaithilingaraja Arumugaswami.
Published: 06-26-2014
ABSTRACT
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.
21 Related JoVE Articles!
Play Button
Two Methods of Heterokaryon Formation to Discover HCV Restriction Factors
Authors: Anne Frentzen, Kathrin Hueging, Julia Bitzegeio, Thomas Pietschmann, Eike Steinmann.
Institutions: Twincore, Centre for Experimental and Clinical Infection Research, The Rockefeller University, NY.
Hepatitis C virus (HCV) is a hepatotropic virus with a host-range restricted to humans and chimpanzees. Although HCV RNA replication has been observed in human non-hepatic and murine cell lines, the efficiency was very low and required long-term selection procedures using HCV replicon constructs expressing dominant antibiotic-selectable markers1-5. HCV in vitro research is therefore limited to human hepatoma cell lines permissive for virus entry and completion of the viral life cycle. Due to HCVs narrow species tropism, there is no immunocompetent small animal model available that sustains the complete HCV replication cycle 6-8. Inefficient replication of HCV in non-human cells e.g. of mouse origin is likely due to lack of genetic incompatibility of essential host dependency factors and/or expression of restriction factors. We investigated whether HCV propagation is suppressed by dominant restriction factors in either human cell lines derived from non-hepatic tissues or in mouse liver cell lines. To this end, we developed two independent conditional trans-complementation methods relying on somatic cell fusion. In both cases, completion of the viral replication cycle is only possible in the heterokaryons. Consequently, successful trans-complementation, which is determined by measuring de novo production of infectious viral progeny, indicates absence of dominant restrictions. Specifically, subgenomic HCV replicons carrying a luciferase transgene were transfected into highly permissive human hepatoma cells (Huh-7.5 cells). Subsequently, these cells were co-cultured and fused to various human and murine cells expressing HCV structural proteins core, envelope 1 and 2 (E1, E2) and accessory proteins p7 and NS2. Provided that cell fusion was initiated by treatment with polyethylene-glycol (PEG), the culture released infectious viral particles which infected naïve cells in a receptor-dependent fashion. To assess the influence of dominant restrictions on the complete viral life cycle including cell entry, RNA translation, replication and virus assembly, we took advantage of a human liver cell line (Huh-7 Lunet N cells 9) which lacks endogenous expression of CD81, an essential entry factor of HCV. In the absence of ectopically expressed CD81, these cells are essentially refractory to HCV infection 10 . Importantly, when co-cultured and fused with cells that express human CD81 but lack at least another crucial cell entry factor (i.e. SR-BI, CLDN1, OCLN), only the resulting heterokaryons display the complete set of HCV entry factors requisite for infection. Therefore, to analyze if dominant restriction factors suppress completion of the HCV replication cycle, we fused Lunet N cells with various cells from human and mouse origin which fulfill the above mentioned criteria. When co-cultured cells were transfected with a highly fusogenic viral envelope protein mutant of the prototype foamy virus (PFV11) and subsequently challenged with infectious HCV particles (HCVcc), de novo production of infectious virus was observed. This indicates that HCV successfully completed its replication cycle in heterokaryons thus ruling out expression of dominant restriction factors in these cell lines. These novel conditional trans-complementation methods will be useful to screen a large panel of cell lines and primary cells for expression of HCV-specific dominant restriction factors.
Virology, Issue 65, Immunology, Molecular Biology, Genetics, cell fusion, HCV, restriction factor, heterokaryon, mouse, species-specificity
4029
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
2953
Play Button
Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase
Authors: Richard T. Pomerantz, Mike O'Donnell.
Institutions: Rockefeller University.
In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventually resumes elongation after displacing the RNAP from DNA. We also find that the transcription-repair coupling factor, Mfd, promotes direct restart of the fork following the collision by facilitating displacement of the RNAP. These findings demonstrate the intrinsic stability of the replication apparatus and a novel role for the transcription-coupled repair pathway in promoting replication past a RNAP block.
Cellular Biology, Issue 38, replication, transcription, transcription-coupled repair, replisome, RNA polymerase, collision
1919
Play Button
In vitro Transcription and Capping of Gaussia Luciferase mRNA Followed by HeLa Cell Transfection
Authors: Bhairavi Jani, Ryan Fuchs.
Institutions: New England Biolabs.
In vitro transcription is the synthesis of RNA transcripts by RNA polymerase from a linear DNA template containing the corresponding promoter sequence (T7, T3, SP6) and the gene to be transcribed (Figure 1A). A typical transcription reaction consists of the template DNA, RNA polymerase, ribonucleotide triphosphates, RNase inhibitor and buffer containing Mg2+ ions. Large amounts of high quality RNA are often required for a variety of applications. Use of in vitro transcription has been reported for RNA structure and function studies such as splicing1, RNAi experiments in mammalian cells2, antisense RNA amplification by the "Eberwine method"3, microarray analysis4 and for RNA vaccine studies5. The technique can also be used for producing radiolabeled and dye labeled probes6. Warren, et al. recently reported reprogramming of human cells by transfection with in vitro transcribed capped RNA7. The T7 High Yield RNA Synthesis Kit from New England Biolabs has been designed to synthesize up to 180 μg RNA per 20 μl reaction. RNA of length up to 10kb has been successfully transcribed using this kit. Linearized plasmid DNA, PCR products and synthetic DNA oligonucleotides can be used as templates for transcription as long as they have the T7 promoter sequence upstream of the gene to be transcribed. Addition of a 5' end cap structure to the RNA is an important process in eukaryotes. It is essential for RNA stability8, efficient translation9, nuclear transport10 and splicing11. The process involves addition of a 7-methylguanosine cap at the 5' triphosphate end of the RNA. RNA capping can be carried out post-transcriptionally using capping enzymes or co-transcriptionally using cap analogs. In the enzymatic method, the mRNA is capped using the Vaccinia virus capping enzyme12,13. The enzyme adds on a 7-methylguanosine cap at the 5' end of the RNA using GTP and S-adenosyl methionine as donors (cap 0 structure). Both methods yield functionally active capped RNA suitable for transfection or other applications14 such as generating viral genomic RNA for reverse-genetic systems15 and crystallographic studies of cap binding proteins such as eIF4E16. In the method described below, the T7 High Yield RNA Synthesis Kit from NEB is used to synthesize capped and uncapped RNA transcripts of Gaussia luciferase (GLuc) and Cypridina luciferase (CLuc). A portion of the uncapped GLuc RNA is capped using the Vaccinia Capping System (NEB). A linearized plasmid containing the GLuc or CLuc gene and T7 promoter is used as the template DNA. The transcribed RNA is transfected into HeLa cells and cell culture supernatants are assayed for luciferase activity. Capped CLuc RNA is used as the internal control to normalize GLuc expression.
Genetics, Issue 61, In vitro transcription, Vaccinia capping enzyme, transfection, T7 RNA Polymerase, RNA synthesis
3702
Play Button
Reverse Genetics Mediated Recovery of Infectious Murine Norovirus
Authors: Armando Arias, Luis Ureña, Lucy Thorne, Muhammad A. Yunus, Ian Goodfellow.
Institutions: Imperial College London .
Human noroviruses are responsible for most cases of human gastroenteritis (GE) worldwide and are recurrent problem in environments where close person-to-person contact cannot be avoided 1, 2. During the last few years an increase in the incidence of outbreaks in hospitals has been reported, causing significant disruptions to their operational capacity as well as large economic losses. The identification of new antiviral approaches has been limited due to the inability of human noroviruses to complete a productive infection in cell culture 3. The recent isolation of a murine norovirus (MNV), closely related to human norovirus 4 but which can be propagated in cells 5 has opened new avenues for the investigation of these pathogens 6, 7. MNV replication results in the synthesis of new positive sense genomic and subgenomic RNA molecules, the latter of which corresponds to the last third of the viral genome (Figure 1). MNV contains four different open reading frames (ORFs), of which ORF1 occupies most of the genome and encodes seven non-structural proteins (NS1-7) released from a polyprotein precursor. ORF2 and ORF3 are contained within the subgenomic RNA region and encode the capsid proteins (VP1 and VP2, respectively) (Figure 1). Recently, we have identified that additional ORF4 overlapping ORF2 but in a different reading frame is functional and encodes for a mitochondrial localised virulence factor (VF1) 8. Replication for positive sense RNA viruses, including noroviruses, takes place in the cytoplasm resulting in the synthesis of new uncapped RNA genomes. To promote viral translation, viruses exploit different strategies aimed at recruiting the cellular protein synthesis machinery 9-11. Interestingly, norovirus translation is driven by the multifunctional viral protein-primer VPg covalently linked to the 5' end of both genomic and subgenomic RNAs 12-14. This sophisticated mechanism of translation is likely to be a major factor in the limited efficiency of viral recovery by conventional reverse genetics approaches. Here we report two different strategies based on the generation of murine norovirus-1 (referred to as MNV herewith) transcripts capped at the 5' end. One of the methods involves both in vitro synthesis and capping of viral RNA, whereas the second approach entails the transcription of MNV cDNA in cells expressing T7 RNA polymerase. The availability of these reverse genetics systems for the study of MNV and a small animal model has provided an unprecedented ability to dissect the role of viral sequences in replication and pathogenesis 15-17.
Virology, Issue 64, Immunology, Genetics, Infection, RNA virus, VPg, RNA capping, T7 RNA polymerase, calicivirus, norovirus
4145
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
51542
Play Button
Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease
Authors: Farid Rahimi, Gal Bitan.
Institutions: David Geffen School of Medicine, University of California, Los Angeles, University of California, Los Angeles.
Alzheimer's disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult1. Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies2,3. Amyloid β-protein (Aβ) is central to AD pathogenesis. Soluble, oligomeric Aβ assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD4,5. Various forms of soluble Aβ assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood6. Specific molecular recognition tools may unravel the relationships amongst Aβ assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies7,8. Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)9,10. SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes). Despite emergence of aptamers as tools in modern biotechnology and medicine11, they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)12-16. An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-β17, a soluble, oligomeric, β-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils18. Aptamers generated using monomeric and several forms of fibrillar β2-microglobulin (β2m) were found to bind fibrils of certain other amyloidogenic proteins besides β2m fibrils19. Ylera et al. described RNA aptamers selected against immobilized monomeric Aβ4020. Unexpectedly, these aptamers bound fibrillar Aβ40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Aβ4021 generated using photo-induced cross-linking of unmodified proteins (PICUP)22,23. Similar to previous findings17,19,20, these aptamers reacted with fibrils of Aβ and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope21. Here, we present the SELEX methodology used in production of these aptamers21.
Neuroscience, Issue 39, Cellular Biology, Aptamer, RNA, amyloid β-protein, oligomer, amyloid fibrils, protein assembly
1955
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Nucleoside Triphosphates - From Synthesis to Biochemical Characterization
Authors: Marcel Hollenstein, Christine Catherine Smith, Michael Räz.
Institutions: University of Bern.
The traditional strategy for the introduction of chemical functionalities is the use of solid-phase synthesis by appending suitably modified phosphoramidite precursors to the nascent chain. However, the conditions used during the synthesis and the restriction to rather short sequences hamper the applicability of this methodology. On the other hand, modified nucleoside triphosphates are activated building blocks that have been employed for the mild introduction of numerous functional groups into nucleic acids, a strategy that paves the way for the use of modified nucleic acids in a wide-ranging palette of practical applications such as functional tagging and generation of ribozymes and DNAzymes. One of the major challenges resides in the intricacy of the methodology leading to the isolation and characterization of these nucleoside analogues. In this video article, we present a detailed protocol for the synthesis of these modified analogues using phosphorous(III)-based reagents. In addition, the procedure for their biochemical characterization is divulged, with a special emphasis on primer extension reactions and TdT tailing polymerization. This detailed protocol will be of use for the crafting of modified dNTPs and their further use in chemical biology.
Chemistry, Issue 86, Nucleic acid analogues, Bioorganic Chemistry, PCR, primer extension reactions, organic synthesis, PAGE, HPLC, nucleoside triphosphates
51385
Play Button
Substrate Generation for Endonucleases of CRISPR/Cas Systems
Authors: Judith Zoephel, Srivatsa Dwarakanath, Hagen Richter, André Plagens, Lennart Randau.
Institutions: Max-Planck-Institute for Terrestrial Microbiology.
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
Molecular biology, Issue 67, CRISPR/Cas, endonuclease, in vitro transcription, crRNA, Cas6
4277
Play Button
Generation of Stable Human Cell Lines with Tetracycline-inducible (Tet-on) shRNA or cDNA Expression
Authors: Marta Gomez-Martinez, Debora Schmitz, Alexander Hergovich.
Institutions: UCL Cancer Institute, Friedrich Miescher Institute for Biomedical Research .
A major approach in the field of mammalian cell biology is the manipulation of the expression of genes of interest in selected cell lines, with the aim to reveal one or several of the gene's function(s) using transient/stable overexpression or knockdown of the gene of interest. Unfortunately, for various cell biological investigations this approach is unsuitable when manipulations of gene expression result in cell growth/proliferation defects or unwanted cell differentiation. Therefore, researchers have adapted the Tetracycline repressor protein (TetR), taken from the E. coli tetracycline resistance operon1, to generate very efficient and tight regulatory systems to express cDNAs in mammalian cells2,3. In short, TetR has been modified to either (1) block initiation of transcription by binding to the Tet-operator (TO) in the promoter region upon addition of tetracycline (termed Tet-off system) or (2) bind to the TO in the absence of tetracycline (termed Tet-on system) (Figure 1). Given the inconvenience that the Tet-off system requires the continuous presence of tetracycline (which has a half-life of about 24 hr in tissue cell culture medium) the Tet-on system has been more extensively optimized, resulting in the development of very tight and efficient vector systems for cDNA expression as used here. Shortly after establishment of RNA interference (RNAi) for gene knockdown in mammalian cells4, vectors expressing short-hairpin RNAs (shRNAs) were described that function very similar to siRNAs5-11. However, these shRNA-mediated knockdown approaches have the same limitation as conventional knockout strategies, since stable depletion is not feasible when gene targets are essential for cellular survival. To overcome this limitation, van de Wetering et al.12 modified the shRNA expression vector pSUPER5 by inserting a TO in the promoter region, which enabled them to generate stable cell lines with tetracycline-inducible depletion of their target genes of interest. Here, we describe a method to efficiently generate stable human Tet-on cell lines that reliably drive either inducible overexpression or depletion of the gene of interest. Using this method, we have successfully generated Tet-on cell lines which significantly facilitated the analysis of the MST/hMOB/NDR cascade in centrosome13,14 and apoptosis signaling15,16. In this report, we describe our vectors of choice, in addition to describing the two consecutive manipulation steps that are necessary to efficiently generate human Tet-on cell lines (Figure 2). Moreover, besides outlining a protocol for the generation of human Tet-on cell lines, we will discuss critical aspects regarding the technical procedures and the characterization of Tet-on cells.
Genetics, Issue 73, Medicine, Biomedical Engineering, Bioengineering, Cellular Biology, Molecular Biology, Anatomy, Physiology, Mammals, Proteins, Cell Biology, tissue culture, stable manipulation of cell lines, tetracycline regulated expression, cDNA, DNA, shRNA, vectors, tetracycline, promoter, expression, genes, clones, cell culture
50171
Play Button
High-throughput Purification of Affinity-tagged Recombinant Proteins
Authors: Simone C. Wiesler, Robert O.J. Weinzierl.
Institutions: Imperial College London .
X-ray crystallography is the method of choice for obtaining a detailed view of the structure of proteins. Such studies need to be complemented by further biochemical analyses to obtain detailed insights into structure/function relationships. Advances in oligonucleotide- and gene synthesis technology make large-scale mutagenesis strategies increasingly feasible, including the substitution of target residues by all 19 other amino acids. Gain- or loss-of-function phenotypes then allow systematic conclusions to be drawn, such as the contribution of particular residues to catalytic activity, protein stability and/or protein-protein interaction specificity. In order to attribute the different phenotypes to the nature of the mutation - rather than to fluctuating experimental conditions - it is vital to purify and analyse the proteins in a controlled and reproducible manner. High-throughput strategies and the automation of manual protocols on robotic liquid-handling platforms have created opportunities to perform such complex molecular biological procedures with little human intervention and minimal error rates1-5. Here, we present a general method for the purification of His-tagged recombinant proteins in a high-throughput manner. In a recent study, we applied this method to a detailed structure-function investigation of TFIIB, a component of the basal transcription machinery. TFIIB is indispensable for promoter-directed transcription in vitro and is essential for the recruitment of RNA polymerase into a preinitiation complex6-8. TFIIB contains a flexible linker domain that penetrates the active site cleft of RNA polymerase9-11. This linker domain confers two biochemically quantifiable activities on TFIIB, namely (i) the stimulation of the catalytic activity during the 'abortive' stage of transcript initiation, and (ii) an additional contribution to the specific recruitment of RNA polymerase into the preinitiation complex4,5,12 . We exploited the high-throughput purification method to generate single, double and triple substitution and deletions mutations within the TFIIB linker and to subsequently analyse them in functional assays for their stimulation effect on the catalytic activity of RNA polymerase4. Altogether, we generated, purified and analysed 381 mutants - a task which would have been time-consuming and laborious to perform manually. We produced and assayed the proteins in multiplicates which allowed us to appreciate any experimental variations and gave us a clear idea of the reproducibility of our results. This method serves as a generic protocol for the purification of His-tagged proteins and has been successfully used to purify other recombinant proteins. It is currently optimised for the purification of 24 proteins but can be adapted to purify up to 96 proteins.
Biochemistry, Issue 66, Genetics, Molecular Biology, Bioinformatics, Recombinant proteins, histidine tag, affinity purification, high-throughput, automation
4110
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
2954
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
A Protocol for Phage Display and Affinity Selection Using Recombinant Protein Baits
Authors: Rekha Kushwaha, Kim R. Schäfermeyer, A. Bruce Downie.
Institutions: University of Kentucky .
Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed.
Biochemistry, Issue 84, Affinity selection, Phage display, protein-protein interaction
50685
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
50436
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses
Authors: Marianne Lucas-Hourani, Hélène Munier-Lehmann, Olivier Helynck, Anastassia Komarova, Philippe Desprès, Frédéric Tangy, Pierre-Olivier Vidalain.
Institutions: Institut Pasteur, CNRS UMR3569, Institut Pasteur, CNRS UMR3523, Institut Pasteur.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Immunology, Issue 87, Viral infections, high-throughput screening assays, broad-spectrum antivirals, chikungunya virus, measles virus, luciferase reporter, chemical libraries
51222
Play Button
Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro
Authors: Joseph Jablonski, Mark Clementz, Kevin Ryan, Susana T. Valente.
Institutions: The Scripps Research Institute, City College of New York.
The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs.
Infectious Diseases, Issue 87, Cleavage, Polyadenylation, mRNA processing, Nuclear extracts, 3' Processing Complex
51309
Play Button
RNA Extraction from Neuroprecursor Cells Using the Bio-Rad Total RNA Kit
Authors: Jia Sheng Su, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Basic Protocols, Issue 9, RNA, Purification, Brain
405
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.