JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Metabolic labeling of Caenorhabditis elegans primary embryonic cells with azido-sugars as a tool for glycoprotein discovery.
Glycobiology research with Caenorhabditis elegans (C. elegans) has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc) and N-acetylglucosamine (GlcNAc), and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase ?-subunit), a predicted glycoprotein (aspartyl protease, ASP-4), and a protein family with established glycosylation in other species (actin). Additionally, we observed a glycosylated isoform of ATP synthase ?-subunit in bovine heart tissue and a primate cell line (COS-7). Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.
Authors: Rachele Sangaletti, Laura Bianchi.
Published: 09-21-2013
C. elegans is a powerful model system, in which genetic and molecular techniques are easily applicable. Until recently though, techniques that require direct access to cells and isolation of specific cell types, could not be applied in C. elegans. This limitation was due to the fact that tissues are confined within a pressurized cuticle which is not easily digested by treatment with enzymes and/or detergents. Based on early pioneer work by Laird Bloom, Christensen and colleagues 1 developed a robust method for culturing C. elegans embryonic cells in large scale. Eggs are isolated from gravid adults by treatment with bleach/NaOH and subsequently treated with chitinase to remove the eggshells. Embryonic cells are then dissociated by manual pipetting and plated onto substrate-covered glass in serum-enriched media. Within 24 hr of isolation cells begin to differentiate by changing morphology and by expressing cell specific markers. C. elegans cells cultured using this method survive for up 2 weeks in vitro and have been used for electrophysiological, immunochemical, and imaging analyses as well as they have been sorted and used for microarray profiling.
21 Related JoVE Articles!
Play Button
Visualization of Caenorhabditis elegans Cuticular Structures Using the Lipophilic Vital Dye DiI
Authors: Robbie D. Schultz, Tina L. Gumienny.
Institutions: Texas A&M University System Health Science Center, College of Medicine.
The cuticle of C. elegans is a highly resistant structure that surrounds the exterior of the animal1-4. The cuticle not only protects the animal from the environment, but also determines body shape and plays a role in motility4-6. Several layers secreted by epidermal cells comprise the cuticle, including an outermost lipid layer7. Circumferential ridges in the cuticle called annuli pattern the length of the animal and are present during all stages of development8. Alae are longitudinal ridges that are present during specific stages of development, including L1, dauer, and adult stages2,9. Mutations in genes that affect cuticular collagen organization can alter cuticular structure and animal body morphology5,6,10,11. While cuticular imaging using compound microscopy with DIC optics is possible, current methods that highlight cuticular structures include fluorescent transgene expression12, antibody staining13, and electron microscopy1. Labeled wheat germ agglutinin (WGA) has also been used to visualize cuticular glycoproteins, but is limited in resolving finer cuticular structures14. Staining of cuticular surface using fluorescent dye has been observed, but never characterized in detail15. We present a method to visualize cuticle in live C. elegans using the red fluorescent lipophilic dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), which is commonly used in C. elegans to visualize environmentally exposed neurons. This optimized protocol for DiI staining is a simple, robust method for high resolution fluorescent visualization of annuli, alae, vulva, male tail, and hermaphrodite tail spike in C. elegans.
Developmental Biology, Issue 59, Cuticle, alae, annuli, C. elegans, DiI, lipid staining, live stain
Play Button
Solid Plate-based Dietary Restriction in Caenorhabditis elegans
Authors: Tsui-Ting Ching, Ao-Lin Hsu.
Institutions: University of Michigan, University of Michigan.
Reduction of food intake without malnutrition or starvation is known to increase lifespan and delay the onset of various age-related diseases in a wide range of species, including mammals. It also causes a decrease in body weight and fertility, as well as lower levels of plasma glucose, insulin, and IGF-1 in these animals. This treatment is often referred to as dietary restriction (DR) or caloric restriction (CR). The nematode Caenorhabditis elegans has emerged as an important model organism for studying the biology of aging. Both environmental and genetic manipulations have been used to model DR and have shown to extend lifespan in C. elegans. However, many of the reported DR studies in C. elegans were done by propagating animals in liquid media, while most of the genetic studies in the aging field were done on the standard solid agar in petri plates. Here we present a DR protocol using standard solid NGM agar-based plate with killed bacteria.
Developmental Biology, Issue 51, Dietary restriction, caloric restriction, C. elegans, longevity
Play Button
Methods for Studying the Mechanisms of Action of Antipsychotic Drugs in Caenorhabditis elegans
Authors: Limin Hao, Edgar A. Buttner.
Institutions: Harvard Medical School, McLean Hospital.
Caenorhabditis elegans is a simple genetic organism amenable to large-scale forward and reverse genetic screens and chemical genetic screens. The C. elegans genome includes potential antipsychotic drug (APD) targets conserved in humans, including genes encoding proteins required for neurotransmitter synthesis and for synaptic structure and function. APD exposure produces developmental delay and/or lethality in nematodes in a concentration-dependent manner. These phenotypes are caused, in part, by APD-induced inhibition of pharyngeal pumping1,2. Thus, the developmental phenotype has a neuromuscular basis, making it useful for pharmacogenetic studies of neuroleptics. Here we demonstrate detailed procedures for testing APD effects on nematode development and pharyngeal pumping. For the developmental assay, synchronized embryos are placed on nematode growth medium (NGM) plates containing APDs, and the stages of developing animals are then scored daily. For the pharyngeal pumping rate assay, staged young adult animals are tested on NGM plates containing APDs. The number of pharyngeal pumps per unit time is recorded, and the pumping rate is calculated. These assays can be used for studying many other types of small molecules or even large molecules.
Neuroscience, Issue 84, antipsychotic drug, Caenorhabditis elegans, clozapine, developmental delay, lethality, nematode, pharmacogenetics, pharyngeal pumping, schizophrenia
Play Button
A Protocol to Infect Caenorhabditis elegans with Salmonella typhimurium
Authors: Jiuli Zhang, Kailiang Jia.
Institutions: Florida Atlantic University.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.
Immunology, Issue 88, C. elegans, Salmonella typhimurium, autophagy, infection, pathogen, host, RNAi
Play Button
Application of a C. elegans Dopamine Neuron Degeneration Assay for the Validation of Potential Parkinson's Disease Genes
Authors: Laura A. Berkowitz, Shusei Hamamichi, Adam L. Knight, Adam J. Harrington, Guy A. Caldwell, Kim A. Caldwell.
Institutions: University of Alabama.
Improvements to the diagnosis and treatment of Parkinson's disease (PD) are dependent upon knowledge about susceptibility factors that render populations at risk. In the process of attempting to identify novel genetic factors associated with PD, scientists have generated many lists of candidate genes, polymorphisms, and proteins that represent important advances, but these leads remain mechanistically undefined. Our work is aimed toward significantly narrowing such lists by exploiting the advantages of a simple animal model system. While humans have billions of neurons, the microscopic roundworm Caenorhabditis elegans has precisely 302, of which only eight produce dopamine (DA) in hemaphrodites. Expression of a human gene encoding the PD-associated protein, alpha-synuclein, in C. elegans DA neurons results in dosage and age-dependent neurodegeneration. Worms expressing human alpha-synuclein in DA neurons are isogenic and express both GFP and human alpha-synuclein under the DA transporter promoter (Pdat-1). The presence of GFP serves as a readily visualized marker for following DA neurodegeneration in these animals. We initially demonstrated that alpha-synuclein-induced DA neurodegeneration could be rescued in these animals by torsinA, a protein with molecular chaperone activity 1. Further, candidate PD-related genes identified in our lab via large-scale RNAi screening efforts using an alpha-synuclein misfolding assay were then over-expressed in C. elegans DA neurons. We determined that five of seven genes tested represented significant candidate modulators of PD as they rescued alpha-synuclein-induced DA neurodegeneration 2. Additionally, the Lindquist Lab (this issue of JoVE) has performed yeast screens whereby alpha-synuclein-dependent toxicity is used as a readout for genes that can enhance or suppress cytotoxicity. We subsequently examined the yeast candidate genes in our C. elegans alpha-synuclein-induced neurodegeneration assay and successfully validated many of these targets 3, 4. Our methodology involves generation of a C. elegans DA neuron-specific expression vector using recombinational cloning of candidate gene cDNAs under control of the Pdat-1 promoter. These plasmids are then microinjected in wild-type (N2) worms, along with a selectable marker for successful transformation. Multiple stable transgenic lines producing the candidate protein in DA neurons are obtained and then independently crossed into the alpha-synuclein degenerative strain and assessed for neurodegeneration, at both the animal and individual neuron level, over the course of aging.
Neuroscience, Issue 17, C. elegans, Parkinson's disease, neuroprotection, alpha-synuclein, Translational Research
Play Button
Using RNA-mediated Interference Feeding Strategy to Screen for Genes Involved in Body Size Regulation in the Nematode C. elegans
Authors: Jun Liang, Sheng Xiong, Cathy Savage-Dunn.
Institutions: Borough of Manhattan Community College, City Universtiy of New York (CUNY), Queens College, The City University of New York (CUNY), Queens College, The City University of New York (CUNY).
Double-strand RNA-mediated interference (RNAi) is an effective strategy to knock down target gene expression1-3. It has been applied to many model systems including plants, invertebrates and vertebrates. There are various methods to achieve RNAi in vivo4,5. For example, the target gene may be transformed into an RNAi vector, and then either permanently or transiently transformed into cell lines or primary cells to achieve gene knockdown effects; alternatively synthesized double-strand oligonucleotides from specific target genes (RNAi oligos) may be transiently transformed into cell lines or primary cells to silence target genes; or synthesized double-strand RNA molecules may be microinjected into an organism. Since the nematode C. elegans uses bacteria as a food source, feeding the animals with bacteria expressing double-strand RNA against target genes provides a viable strategy6. Here we present an RNAi feeding method to score body size phenotype. Body size in C. elegans is regulated primarily by the TGF- β - like ligand DBL-1, so this assay is appropriate for identification of TGF-β signaling components7. We used different strains including two RNAi hypersensitive strains to repeat the RNAi feeding experiments. Our results showed that rrf-3 strain gave us the best expected RNAi phenotype. The method is easy to perform, reproducible, and easily quantified. Furthermore, our protocol minimizes the use of specialized equipment, so it is suitable for smaller laboratories or those at predominantly undergraduate institutions.
Developmental Biology, Issue 72, Genetics, Cellular Biology, Molecular Biology, Biochemistry, Basic Protocols, RNAi feeding technique, genetic screen, TGF-beta, body size, C. elegans, Caenorhabditis elegans, RNA-mediated Interference, RNAi, RNA, DNA, gene expression knock down, animal model
Play Button
Paradigms for Pharmacological Characterization of C. elegans Synaptic Transmission Mutants
Authors: Cody Locke, Kalen Berry, Bwarenaba Kautu, Kyle Lee, Kim Caldwell, Guy Caldwell.
Institutions: University of Alabama.
The nematode, Caenorhabditis elegans, has become an expedient model for studying neurotransmission. C. elegans is unique among animal models, as the anatomy and connectivity of its nervous system has been determined from electron micrographs and refined by pharmacological assays. In this video, we describe how two complementary neural stimulants, an acetylcholinesterase inhibitor, called aldicarb, and a gamma-aminobutyric acid (GABA) receptor antagonist, called pentylenetetrazole (PTZ), may be employed to specifically characterize signaling at C. elegans neuromuscular junctions (NMJs) and facilitate our understanding of antagonistic neural circuits. Of 302 C. elegans neurons, nineteen GABAergic D-type motor neurons innervate body wall muscles (BWMs), while four GABAergic neurons, called RMEs, innervate head muscles. Conversely, thirty-nine motor neurons express the excitatory neurotransmitter, acetylcholine (ACh), and antagonize GABA transmission at BWMs to coordinate locomotion. The antagonistic nature of GABAergic and cholinergic motor neurons at body wall NMJs was initially determined by laser ablation and later buttressed by aldicarb exposure. Acute aldicarb exposure results in a time-course or dose-responsive paralysis in wild-type worms. Yet, loss of excitatory ACh transmission confers resistance to aldicarb, as less ACh accumulates at worm NMJs, leading to less stimulation of BWMs. Resistance to aldicarb may be observed with ACh-specific or general synaptic function mutants. Consistent with antagonistic GABA and ACh transmission, loss of GABA transmission, or a failure to negatively regulate ACh release, confers hypersensitivity to aldicarb. Although aldicarb exposure has led to the isolation of numerous worm homologs of neurotransmission genes, aldicarb exposure alone cannot efficiently determine prevailing roles for genes and pathways in specific C. elegans motor neurons. For this purpose, we have introduced a complementary experimental approach, which uses PTZ. Neurotransmission mutants display clear phenotypes, distinct from aldicarb-induced paralysis, in response to PTZ. Wild-type worms, as well as mutants with specific inabilities to release or receive ACh, do not show apparent sensitivity to PTZ. However, GABA mutants, as well as general synaptic function mutants, display anterior convulsions in a time-course or dose-responsive manner. Mutants that cannot negatively regulate general neurotransmitter release and, thus, secrete excessive amounts of ACh onto BWMs, become paralyzed on PTZ. The PTZ-induced phenotypes of discrete mutant classes indicate that a complementary approach with aldicarb and PTZ exposure paradigms in C. elegans may accelerate our understanding of neurotransmission. Moreover, videos demonstrating how we perform pharmacological assays should establish consistent methods for C. elegans research.
Neuroscience, Issue 18, epilepsy, seizure, Caenorhabditis elegans, genetics, worm, nematode, aldicarb, pentylenetetrazole, synaptic, GABA
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
Play Button
Measuring the Effects of Bacteria on C. Elegans Behavior Using an Egg Retention Assay
Authors: Mona Gardner, Mary Rosell, Edith M. Myers.
Institutions: Fairleigh Dickinson University.
C. elegans egg-laying behavior is affected by environmental cues such as osmolarity1 and vibration2. In the total absence of food C. elegans also cease egg-laying and retain fertilized eggs in their uterus3. However, the effect of different sources of food, especially pathogenic bacteria and particularly Enterococcus faecalis, on egg-laying behavior is not well characterized. The egg-in-worm (EIW) assay is a useful tool to quantify the effects of different types of bacteria, in this case E. faecalis, on egg- laying behavior. EIW assays involve counting the number of eggs retained in the uterus of C. elegans4. The EIW assay involves bleaching staged, gravid adult C. elegans to remove the cuticle and separate the retained eggs from the animal. Prior to bleaching, worms are exposed to bacteria (or any type of environmental cue) for a fixed period of time. After bleaching, one is very easily able to count the number of eggs retained inside the uterus of the worms. In this assay, a quantifiable increase in egg retention after E. faecalis exposure can be easily measured. The EIW assay is a behavioral assay that may be used to screen for potentially pathogenic bacteria or the presence of environmental toxins. In addition, the EIW assay may be a tool to screen for drugs that affect neurotransmitter signaling since egg-laying behavior is modulated by neurotransmitters such as serotonin and acetylcholine5-9.
Developmental Biology, Issue 80, Microbiology, C. elegans, Behavior, Animal, Microbiology, Caenorhabditis elegans, Enterococcus faecalis, egg-laying behavior, animal model
Play Button
Isolation and In vitro Activation of Caenorhabditis elegans Sperm
Authors: Gunasekaran Singaravelu, Indrani Chatterjee, Matthew R. Marcello, Andrew Singson.
Institutions: Rutgers University.
Males and hermaphrodites are the two naturally found sexual forms in the nematode C. elegans. The amoeboid sperm are produced by both males and hermaphrodites. In the earlier phase of gametogenesis, the germ cells of hermaphrodites differentiate into limited number of sperm - around 300 - and are stored in a small 'bag' called the spermatheca. Later on, hermaphrodites continually produce oocytes1. In contrast, males produce exclusively sperm throughout their adulthood. The males produce so much sperm that it accounts for >50% of the total cells in a typical adult worm2. Therefore, isolating sperm from males is easier than from that of hermaphrodites. Only a small proportion of males are naturally generated due to spontaneous non-disjunction of X chromosome3. Crossing hermaphrodites with males or more conveniently, the introduction of mutations to give rise to Him (High Incidence of Males) phenotype are some of strategies through which one can enrich the male population3. Males can be easily distinguished from hermaphrodites by observing the tail morphology4. Hermaphrodite's tail is pointed, whereas male tail is rounded with mating structures. Cutting the tail releases vast number of spermatids stored inside the male reproductive tract. Dissection is performed under a stereo microscope using 27 gauge needles. Since spermatids are not physically connected with any other cells, hydraulic pressure expels internal contents of male body, including spermatids2. Males are directly dissected on a small drop of 'Sperm Medium'. Spermatids are sensitive to alteration in the pH. Hence, HEPES, a compound with good buffering capacity is used in sperm media. Glucose and other salts present in sperm media help maintain osmotic pressure to maintain the integrity of sperm. Post-meiotic differentiation of spermatids into spermatozoa is termed spermiogenesis or sperm activation. Shakes5, and Nelson6 previously showed that round spermatids can be induced to differentiate into spermatozoa by adding various activating compounds including Pronase E. Here we demonstrate in vitro spermiogenesis of C. elegans spermatids using Pronase E. Successful spermiogenesis is pre-requisite for fertility and hence the mutants defective in spermiogenesis are sterile. Hitherto several mutants have been shown to be defective specifically in spermiogenesis process7. Abnormality found during in vitro activation of novel Spe (Spermatogenesis defective) mutants would help us discover additional players participating in this event.
Developmental Biology, Issue 47, spermatid, spermatozoa, spermiogenesis, protease, pseudopod, nematode
Play Button
Identification and Characterization of Protein Glycosylation using Specific Endo- and Exoglycosidases
Authors: Paula E. Magnelli, Alicia M. Bielik, Ellen P. Guthrie.
Institutions: New England Biolabs.
Glycosylation, the addition of covalently linked sugars, is a major post-translational modification of proteins that can significantly affect processes such as cell adhesion, molecular trafficking, clearance, and signal transduction1-4. In eukaryotes, the most common glycosylation modifications in the secretory pathway are additions at consensus asparagine residues (N-linked); or at serine or threonine residues (O-linked) (Figure 1). Initiation of N-glycan synthesis is highly conserved in eukaryotes, while the end products can vary greatly among different species, tissues, or proteins. Some glycans remain unmodified ("high mannose N-glycans") or are further processed in the Golgi ("complex N-glycans"). Greater diversity is found for O-glycans, which start with a common N-Acetylgalactosamine (GalNAc) residue in animal cells but differ in lower organisms1. The detailed analysis of the glycosylation of proteins is a field unto itself and requires extensive resources and expertise to execute properly. However a variety of available enzymes that remove sugars (glycosidases) makes possible to have a general idea of the glycosylation status of a protein in a standard laboratory setting. Here we illustrate the use of glycosidases for the analysis of a model glycoprotein: recombinant human chorionic gonadotropin beta (hCGβ), which carries two N-glycans and four O-glycans 5. The technique requires only simple instrumentation and typical consumables, and it can be readily adapted to the analysis of multiple glycoprotein samples. Several enzymes can be used in parallel to study a glycoprotein. PNGase F is able to remove almost all types of N-linked glycans6,7. For O-glycans, there is no available enzyme that can cleave an intact oligosaccharide from the protein backbone. Instead, O-glycans are trimmed by exoglycosidases to a short core, which is then easily removed by O-Glycosidase. The Protein Deglycosylation Mix contains PNGase F, O-Glycosidase, Neuraminidase (sialidase), β1-4 Galactosidase, and β-N-Acetylglucosaminidase. It is used to simultaneously remove N-glycans and some O-glycans8 . Finally, the Deglycosylation Mix was supplemented with a mixture of other exoglycosidases (α-N-Acetylgalactosaminidase, α1-2 Fucosidase, α1-3,6 Galactosidase, and β1-3 Galactosidase ), which help remove otherwise resistant monosaccharides that could be present in certain O-glycans. SDS-PAGE/Coomasie blue is used to visualize differences in protein migration before and after glycosidase treatment. In addition, a sugar-specific staining method, ProQ Emerald-300, shows diminished signal as glycans are successively removed. This protocol is designed for the analysis of small amounts of glycoprotein (0.5 to 2 μg), although enzymatic deglycosylation can be scaled up to accommodate larger quantities of protein as needed.
Molecular Biology , Issue 58, Glycoprotein, N-glycan, O-glycan, PNGase F, O-glycosidase, deglycosylation, glycosidase
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment
Authors: Tamika K. Samuel, Jason W. Sinclair, Katherine L. Pinter, Iqbal Hamza.
Institutions: University of Maryland, University of Maryland.
In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment.
Molecular Biology, Issue 90, C. elegans, axenic media, transgenics, microparticle bombardment, heme, nutrition
Play Button
Stable Isotopic Profiling of Intermediary Metabolic Flux in Developing and Adult Stage Caenorhabditis elegans
Authors: Marni J. Falk, Meera Rao, Julian Ostrovsky, Evgueni Daikhin, Ilana Nissim, Marc Yudkoff.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
Stable isotopic profiling has long permitted sensitive investigations of the metabolic consequences of genetic mutations and/or pharmacologic therapies in cellular and mammalian models. Here, we describe detailed methods to perform stable isotopic profiling of intermediary metabolism and metabolic flux in the nematode, Caenorhabditis elegans. Methods are described for profiling whole worm free amino acids, labeled carbon dioxide, labeled organic acids, and labeled amino acids in animals exposed to stable isotopes either from early development on nematode growth media agar plates or beginning as young adults while exposed to various pharmacologic treatments in liquid culture. Free amino acids are quantified by high performance liquid chromatography (HPLC) in whole worm aliquots extracted in 4% perchloric acid. Universally labeled 13C-glucose or 1,6-13C2-glucose is utilized as the stable isotopic precursor whose labeled carbon is traced by mass spectrometry in carbon dioxide (both atmospheric and dissolved) as well as in metabolites indicative of flux through glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Representative results are included to demonstrate effects of isotope exposure time, various bacterial clearing protocols, and alternative worm disruption methods in wild-type nematodes, as well as the relative extent of isotopic incorporation in mitochondrial complex III mutant worms (isp-1(qm150)) relative to wild-type worms. Application of stable isotopic profiling in living nematodes provides a novel capacity to investigate at the whole animal level real-time metabolic alterations that are caused by individual genetic disorders and/or pharmacologic therapies.
Developmental Biology, Issue 48, Stable isotope, amino acid quantitation, organic acid quantitation, nematodes, metabolism
Play Button
Improved In-gel Reductive β-Elimination for Comprehensive O-linked and Sulfo-glycomics by Mass Spectrometry
Authors: David B. Nix, Tadahiro Kumagai, Toshihiko Katoh, Michael Tiemeyer, Kazuhiro Aoki.
Institutions: University of Georgia, University of Georgia, Ishikawa Prefectural University.
Separation of proteins by SDS-PAGE followed by in-gel proteolytic digestion of resolved protein bands has produced high-resolution proteomic analysis of biological samples. Similar approaches, that would allow in-depth analysis of the glycans carried by glycoproteins resolved by SDS-PAGE, require special considerations in order to maximize recovery and sensitivity when using mass spectrometry (MS) as the detection method. A major hurdle to be overcome in achieving high-quality data is the removal of gel-derived contaminants that interfere with MS analysis. The sample workflow presented here is robust, efficient, and eliminates the need for in-line HPLC clean-up prior to MS. Gel pieces containing target proteins are washed in acetonitrile, water, and ethyl acetate to remove contaminants, including polymeric acrylamide fragments. O-linked glycans are released from target proteins by in-gel reductive β-elimination and recovered through robust, simple clean-up procedures. An advantage of this workflow is that it improves sensitivity for detecting and characterizing sulfated glycans. These procedures produce an efficient separation of sulfated permethylated glycans from non-sulfated (sialylated and neutral) permethylated glycans by a rapid phase-partition prior to MS analysis, and thereby enhance glycomic and sulfoglycomic analyses of glycoproteins resolved by SDS-PAGE.
Chemistry, Issue 93, glycoprotein, glycosylation, in-gel reductive β-elimination, O-linked glycan, sulfated glycan, mass spectrometry, protein ID, SDS-PAGE, glycomics, sulfoglycomics
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
Play Button
Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry
Authors: Frederick A. Rubino, Yoon Hyeun Oum, Lakshmi Rajaram, Yanjie Chu, Isaac S. Carrico.
Institutions: Stony Brook University.
The modification of virus particles has received a significant amount of attention for its tremendous potential for impacting gene therapy, oncolytic applications and vaccine development.1,2,3 Current approaches to modifying viral surfaces, which are mostly genetics-based, often suffer from attenuation of virus production, infectivity and cellular transduction.4,5 Using chemoselective click chemistry, we have developed a straightforward alternative approach which sidesteps these issues while remaining both highly flexible and accessible.1,2 The goal of this protocol is to demonstrate the effectiveness of using bioorthogonal click chemistry to modify the surface of adenovirus type 5 particles. This two-step process can be used both therapeutically1 or analytically,2,6 as it allows for chemoselective ligation of targeting molecules, dyes or other molecules of interest onto proteins pre-labeled with azide tags. The three major advantages of this method are that (1) metabolic labeling demonstrates little to no impact on viral fitness,1,7 (2) a wide array of effector ligands can be utilized, and (3) it is remarkably fast, reliable and easy to access.1,2,7 In the first step of this procedure, adenovirus particles are produced bearing either azidohomoalanine (Aha, a methionine surrogate) or the unnatural sugar O-linked N-azidoacetylglucosamine (O-GlcNAz), both of which contain the azide (-N3) functional group. After purification of the azide-modified virus particles, an alkyne probe containing the fluorescent TAMRA moiety is ligated in a chemoselective manner to the pre-labeled proteins or glycoproteins. Finally, an SDS-PAGE analysis is performed to demonstrate the successful ligation of the probe onto the viral capsid proteins. Aha incorporation is shown to label all viral capsid proteins (Hexon, Penton and Fiber), while O-GlcNAz incorporation results in labeling of Fiber only. In this evolving field, multiple methods for azide-alkyne ligation have been successfully developed; however only the two we have found to be most convenient are demonstrated herein – strain-promoted azide-alkyne cycloaddition (SPAAC) and copper-catalyzed azide-alkyne cycloaddition (CuAAC) under deoxygenated atmosphere.
Chemistry, Issue 66, Virology, Immunology, Genetics, adenovirus, azide-alkyne cycloaddition, azido sugar, azidohomoalanine, bioorthogonal, click chemistry, gene therapy, unnatural amino acid
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.