JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Isolated Toll-like receptor transmembrane domains are capable of oligomerization.
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.
Authors: Catherine Joce, Alyssa Wiener, Hang Yin.
Published: 05-26-2011
The oversimplified view of protein transmembrane domains as merely anchors in phospholipid bilayers has long since been disproven. In many cases membrane-spanning proteins have evolved highly sophisticated mechanisms of action.1-3 One way in which membrane proteins can modulate their structures and functions is by direct and specific contact of hydrophobic helices, forming structured transmembrane oligomers.4,5 Much recent work has focused on the distribution of amino acids preferentially found in the membrane environment in comparison to aqueous solution and the different intermolecular forces that drive protein association.6,7 Nevertheless, studies of molecular recognition at the transmembrane domain of proteins still lags behind those of water-soluble regions. A major hurdle remains: despite the remarkable specificity and affinity that transmembrane oligomerization can achieve,8 direct measurement of their association is challenging. Traditional methodologies applied to the study of integral membrane protein function can be hampered by the inherent insolubility of the sequences under examination. Biophysical insights gained from studying synthetic peptides representing transmembrane domains can provide useful structural insight. However, the biological relevance of the detergent micellar or liposome systems used in these studies to mimic cellular membranes is often questioned; do peptides adopt a native-like structure under these conditions and does their functional behaviour truly reflect the mode of action within a native membrane? In order to study the interactions of transmembrane sequences in natural phospholipid bilayers, the Langosch lab developed ToxR transcriptional reporter assays.9 The transmembrane domain of interest is expressed as a chimeric protein with maltose binding protein for location to the periplasm and ToxR to provide a report of the level of oligomerization (Figure 1). In the last decade, several other groups (e.g. Engelman, DeGrado, Shai) further optimized and applied this ToxR reporter assay.10-13 The various ToxR assays have become a gold standard to test protein-protein interactions in cell membranes. We herein demonstrate a typical experimental operation conducted in our laboratory that primarily follows protocols developed by Langosch. This generally applicable method is useful for the analysis of transmembrane domain self-association in E. coli, where β-galactosidase production is used to assess the TMD oligomerization propensity. Upon TMD-induced dimerization, ToxR binds to the ctx promoter causing up-regulation of the LacZ gene for β-galactosidase. A colorimetric readout is obtained by addition of ONPG to lyzed cells. Hydrolytic cleavage of ONPG by β-galactosidase results in the production of the light absorbing species o-nitrophenolate (ONP) (Figure 2).
22 Related JoVE Articles!
Play Button
Avidity-based Extracellular Interaction Screening (AVEXIS) for the Scalable Detection of Low-affinity Extracellular Receptor-Ligand Interactions
Authors: Jason S. Kerr, Gavin J. Wright.
Institutions: Wellcome Trust Sanger Institute.
Extracellular protein:protein interactions between secreted or membrane-tethered proteins are critical for both initiating intercellular communication and ensuring cohesion within multicellular organisms. Proteins predicted to form extracellular interactions are encoded by approximately a quarter of human genes1, but despite their importance and abundance, the majority of these proteins have no documented binding partner. Primarily, this is due to their biochemical intractability: membrane-embedded proteins are difficult to solubilise in their native conformation and contain structurally-important posttranslational modifications. Also, the interaction affinities between receptor proteins are often characterised by extremely low interaction strengths (half-lives < 1 second) precluding their detection with many commonly-used high throughput methods2. Here, we describe an assay, AVEXIS (AVidity-based EXtracellular Interaction Screen) that overcomes these technical challenges enabling the detection of very weak protein interactions (t1/2 ≤ 0.1 sec) with a low false positive rate3. The assay is usually implemented in a high throughput format to enable the systematic screening of many thousands of interactions in a convenient microtitre plate format (Fig. 1). It relies on the production of soluble recombinant protein libraries that contain the ectodomain fragments of cell surface receptors or secreted proteins within which to screen for interactions; therefore, this approach is suitable for type I, type II, GPI-linked cell surface receptors and secreted proteins but not for multipass membrane proteins such as ion channels or transporters. The recombinant protein libraries are produced using a convenient and high-level mammalian expression system4, to ensure that important posttranslational modifications such as glycosylation and disulphide bonds are added. Expressed recombinant proteins are secreted into the medium and produced in two forms: a biotinylated bait which can be captured on a streptavidin-coated solid phase suitable for screening, and a pentamerised enzyme-tagged (β-lactamase) prey. The bait and prey proteins are presented to each other in a binary fashion to detect direct interactions between them, similar to a conventional ELISA (Fig. 1). The pentamerisation of the proteins in the prey is achieved through a peptide sequence from the cartilage oligomeric matrix protein (COMP) and increases the local concentration of the ectodomains thereby providing significant avidity gains to enable even very transient interactions to be detected. By normalising the activities of both the bait and prey to predetermined levels prior to screening, we have shown that interactions having monomeric half-lives of 0.1 sec can be detected with low false positive rates3.
Molecular Biology, Issue 61, Receptor-ligand pairs, Extracellular protein interactions, AVEXIS, Adhesion receptors, Transient/weak interactions, High throughput screening
Play Button
Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation
Authors: Schammim R. Amith, Preethi Jayanth, Trisha Finlay, Susan Franchuk, Alanna Gilmour, Samar Abdulkhalek, Myron R. Szewczuk.
Institutions: Queen's University - Kingston, Ontario.
Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative report, Neu1 sialidase has been shown to regulate phagocytosis in macrophage cells 6. Taken together, the sialidase assay has provided us with powerful insights to the molecular mechanisms of ligand-induced receptor activation. Although the precise relationship between Neu1 sialidase and the activation of TLR, Trk receptors has yet to be fully elucidated, it would represent a new or pioneering approach to cell regulation pathways.
Cellular Biology, Issue 43, Neu1 sialidase, TOLL-like receptors, macrophages, sialidase substrate, fluorescence microscopy, cell signaling, receptor activation
Play Button
Expression, Detergent Solubilization, and Purification of a Membrane Transporter, the MexB Multidrug Resistance Protein
Authors: Forum H. Bhatt, Constance J. Jeffery.
Institutions: University of Illinois Chicago - UIC.
Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP) 1-8. The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC) 9-11. In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.
Cellular Biology, Issue 46, multidrug resistance, membrane protein, purification, transmembrane transport, MexB, detergent solubilization, protein detergent complex
Play Button
Bead Aggregation Assays for the Characterization of Putative Cell Adhesion Molecules
Authors: Michelle R. Emond, James D. Jontes.
Institutions: Ohio State University.
Cell-cell adhesion is fundamental to multicellular life and is mediated by a diverse array of cell surface proteins. However, the adhesive interactions for many of these proteins are poorly understood. Here we present a simple, rapid method for characterizing the adhesive properties of putative homophilic cell adhesion molecules. Cultured HEK293 cells are transfected with DNA plasmid encoding a secreted, epitope-tagged ectodomain of a cell surface protein. Using functionalized beads specific for the epitope tag, the soluble, secreted fusion protein is captured from the culture medium. The coated beads can then be used directly in bead aggregation assays or in fluorescent bead sorting assays to test for homophilic adhesion. If desired, mutagenesis can then be used to elucidate the specific amino acids or domains required for adhesion. This assay requires only small amounts of expressed protein, does not require the production of stable cell lines, and can be accomplished in 4 days.
Bioengineering, Issue 92, adhesion, aggregation, Fc-fusion, cadherin, protocadherin
Play Button
Coculture Analysis of Extracellular Protein Interactions Affecting Insulin Secretion by Pancreatic Beta Cells
Authors: Charles Zhang, Arthur T. Suckow, Steven D. Chessler.
Institutions: University of California, San Diego, Janssen Research & Development, University of California, San Diego.
Interactions between cell-surface proteins help coordinate the function of neighboring cells. Pancreatic beta cells are clustered together within pancreatic islets and act in a coordinated fashion to maintain glucose homeostasis. It is becoming increasingly clear that interactions between transmembrane proteins on the surfaces of adjacent beta cells are important determinants of beta-cell function. Elucidation of the roles of particular transcellular interactions by knockdown, knockout or overexpression studies in cultured beta cells or in vivo necessitates direct perturbation of mRNA and protein expression, potentially affecting beta-cell health and/or function in ways that could confound analyses of the effects of specific interactions. These approaches also alter levels of the intracellular domains of the targeted proteins and may prevent effects due to interactions between proteins within the same cell membrane to be distinguished from the effects of transcellular interactions. Here a method for determining the effect of specific transcellular interactions on the insulin secreting capacity and responsiveness of beta cells is presented. This method is applicable to beta-cell lines, such as INS-1 cells, and to dissociated primary beta cells. It is based on coculture models developed by neurobiologists, who found that exposure of cultured neurons to specific neuronal proteins expressed on HEK293 (or COS) cell layers identified proteins important for driving synapse formation. Given the parallels between the secretory machinery of neuronal synapses and of beta cells, we reasoned that beta-cell functional maturation might be driven by similar transcellular interactions. We developed a system where beta cells are cultured on a layer of HEK293 cells expressing a protein of interest. In this model, the beta-cell cytoplasm is untouched while extracellular protein-protein interactions are manipulated. Although we focus here primarily on studies of glucose-stimulated insulin secretion, other processes can be analyzed; for example, changes in gene expression as determined by immunoblotting or qPCR.
Medicine, Issue 76, Cellular Biology, Molecular Biology, Biomedical Engineering, Immunology, Hepatology, Islets of Langerhans, islet, Insulin, Coculture, pancreatic beta cells, INS-1 cells, extracellular contact, transmembrane protein, transcellular interactions, insulin secretion, diabetes, cell culture
Play Button
Quantitative Imaging of Lineage-specific Toll-like Receptor-mediated Signaling in Monocytes and Dendritic Cells from Small Samples of Human Blood
Authors: Feng Qian, Ruth R. Montgomery.
Institutions: Yale University School of Medicine .
Individual variations in immune status determine responses to infection and contribute to disease severity and outcome. Aging is associated with an increased susceptibility to viral and bacterial infections and decreased responsiveness to vaccines with a well-documented decline in humoral as well as cell-mediated immune responses1,2. We have recently assessed the effects of aging on Toll-like receptors (TLRs), key components of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses3. In a large cohort of healthy human donors, we showed that peripheral blood monocytes from the elderly have decreased expression and function of certain TLRs4 and similar reduced TLR levels and signaling responses in dendritic cells (DCs), antigen-presenting cells that are pivotal in the linkage between innate and adaptive immunity5. We have shown dysregulation of TLR3 in macrophages and lower production of IFN by DCs from elderly donors in response to infection with West Nile virus6,7. Paramount to our understanding of immunosenescence and to therapeutic intervention is a detailed understanding of specific cell types responding and the mechanism(s) of signal transduction. Traditional studies of immune responses through imaging of primary cells and surveying cell markers by FACS or immunoblot have advanced our understanding significantly, however, these studies are generally limited technically by the small sample volume available from patients and the inability to conduct complex laboratory techniques on multiple human samples. ImageStream combines quantitative flow cytometry with simultaneous high-resolution digital imaging and thus facilitates investigation in multiple cell populations contemporaneously for an efficient capture of patient susceptibility. Here we demonstrate the use of ImageStream in DCs to assess TLR7/8 activation-mediated increases in phosphorylation and nuclear translocation of a key transcription factor, NF-κB, which initiates transcription of numerous genes that are critical for immune responses8. Using this technology, we have also recently demonstrated a previously unrecognized alteration of TLR5 signaling and the NF-κB pathway in monocytes from older donors that may contribute to altered immune responsiveness in aging9.
Immunology, Issue 62, monocyte, dendritic cells, Toll-like receptors, fluorescent imaging, signaling, FACS, aging
Play Button
Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria
Authors: Jeremy C. Henderson, John P. O'Brien, Jennifer S. Brodbelt, M. Stephen Trent.
Institutions: The University of Texas at Austin, The University of Texas at Austin, The University of Texas at Austin.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Chemistry, Issue 79, Membrane Lipids, Toll-Like Receptors, Endotoxins, Glycolipids, Lipopolysaccharides, Lipid A, Microbiology, Lipids, lipid A, Bligh-Dyer, thin layer chromatography (TLC), lipopolysaccharide, mass spectrometry, Collision Induced Dissociation (CID), Photodissociation (PD)
Play Button
Live Imaging Assay for Assessing the Roles of Ca2+ and Sphingomyelinase in the Repair of Pore-forming Toxin Wounds
Authors: Christina Tam, Andrew R. Flannery, Norma Andrews.
Institutions: University of Maryland .
Plasma membrane injury is a frequent event, and wounds have to be rapidly repaired to ensure cellular survival. Influx of Ca2+ is a key signaling event that triggers the repair of mechanical wounds on the plasma membrane within ~30 sec. Recent studies revealed that mammalian cells also reseal their plasma membrane after permeabilization with pore forming toxins in a Ca2+-dependent process that involves exocytosis of the lysosomal enzyme acid sphingomyelinase followed by pore endocytosis. Here, we describe the methodology used to demonstrate that the resealing of cells permeabilized by the toxin streptolysin O is also rapid and dependent on Ca2+ influx. The assay design allows synchronization of the injury event and a precise kinetic measurement of the ability of cells to restore plasma membrane integrity by imaging and quantifying the extent by which the liphophilic dye FM1-43 reaches intracellular membranes. This live assay also allows a sensitive assessment of the ability of exogenously added soluble factors such as sphingomyelinase to inhibit FM1-43 influx, reflecting the ability of cells to repair their plasma membrane. This assay allowed us to show for the first time that sphingomyelinase acts downstream of Ca2+-dependent exocytosis, since extracellular addition of the enzyme promotes resealing of cells permeabilized in the absence of Ca2+.
Cellular Biology, Issue 78, Molecular Biology, Infection, Medicine, Immunology, Biomedical Engineering, Anatomy, Physiology, Biophysics, Genetics, Bacterial Toxins, Microscopy, Video, Endocytosis, Biology, Cell Biology, streptolysin O, plasma membrane repair, ceramide, endocytosis, Ca2+, wounds
Play Button
Expression of Functional Recombinant Hemagglutinin and Neuraminidase Proteins from the Novel H7N9 Influenza Virus Using the Baculovirus Expression System
Authors: Irina Margine, Peter Palese, Florian Krammer.
Institutions: Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai.
The baculovirus expression system is a powerful tool for expression of recombinant proteins. Here we use it to produce correctly folded and glycosylated versions of the influenza A virus surface glycoproteins - the hemagglutinin (HA) and the neuraminidase (NA). As an example, we chose the HA and NA proteins expressed by the novel H7N9 virus that recently emerged in China. However the protocol can be easily adapted for HA and NA proteins expressed by any other influenza A and B virus strains. Recombinant HA (rHA) and NA (rNA) proteins are important reagents for immunological assays such as ELISPOT and ELISA, and are also in wide use for vaccine standardization, antibody discovery, isolation and characterization. Furthermore, recombinant NA molecules can be used to screen for small molecule inhibitors and are useful for characterization of the enzymatic function of the NA, as well as its sensitivity to antivirals. Recombinant HA proteins are also being tested as experimental vaccines in animal models, and a vaccine based on recombinant HA was recently licensed by the FDA for use in humans. The method we describe here to produce these molecules is straight forward and can facilitate research in influenza laboratories, since it allows for production of large amounts of proteins fast and at a low cost. Although here we focus on influenza virus surface glycoproteins, this method can also be used to produce other viral and cellular surface proteins.
Infection, Issue 81, Influenza A virus, Orthomyxoviridae Infections, Influenza, Human, Influenza in Birds, Influenza Vaccines, hemagglutinin, neuraminidase, H7N9, baculovirus, insect cells, recombinant protein expression
Play Button
In Vitro Analysis of PDZ-dependent CFTR Macromolecular Signaling Complexes
Authors: Yanning Wu, Shuo Wang, Chunying Li.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis1-3. CFTR has been implicated in two major diseases: cystic fibrosis (CF)4 and secretory diarrhea5. In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States6. Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut7. Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo8-19. In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP20-27. The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)20. Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities22. This multivalency with respect to CFTR binding has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells16-18. Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay16-19,28,29. Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR16-19,28,29.
Biochemistry, Issue 66, Molecular Biology, Chemistry, CFTR, macromolecular complex, protein interaction, PDZ scaffold protein, epithelial cell, cystic fibrosis
Play Button
A High-content Imaging Workflow to Study Grb2 Signaling Complexes by Expression Cloning
Authors: Jamie Freeman, Janos Kriston-Vizi, Brian Seed, Robin Ketteler.
Institutions: University College London, Massachusetts General Hospital.
Signal transduction by growth factor receptors is essential for cells to maintain proliferation and differentiation and requires tight control. Signal transduction is initiated by binding of an external ligand to a transmembrane receptor and activation of downstream signaling cascades. A key regulator of mitogenic signaling is Grb2, a modular protein composed of an internal SH2 (Src Homology 2) domain flanked by two SH3 domains that lacks enzymatic activity. Grb2 is constitutively associated with the GTPase Son-Of-Sevenless (SOS) via its N-terminal SH3 domain. The SH2 domain of Grb2 binds to growth factor receptors at phosphorylated tyrosine residues thus coupling receptor activation to the SOS-Ras-MAP kinase signaling cascade. In addition, other roles for Grb2 as a positive or negative regulator of signaling and receptor endocytosis have been described. The modular composition of Grb2 suggests that it can dock to a variety of receptors and transduce signals along a multitude of different pathways1-3. Described here is a simple microscopy assay that monitors recruitment of Grb2 to the plasma membrane. It is adapted from an assay that measures changes in sub-cellular localization of green-fluorescent protein (GFP)-tagged Grb2 in response to a stimulus4-6. Plasma membrane receptors that bind Grb2 such as activated Epidermal Growth Factor Receptor (EGFR) recruit GFP-Grb2 to the plasma membrane upon cDNA expression and subsequently relocate to endosomal compartments in the cell. In order to identify in vivo protein complexes of Grb2, this technique can be used to perform a genome-wide high-content screen based on changes in Grb2 sub-cellular localization. The preparation of cDNA expression clones, transfection and image acquisition are described in detail below. Compared to other genomic methods used to identify protein interaction partners, such as yeast-two-hybrid, this technique allows the visualization of protein complexes in mammalian cells at the sub-cellular site of interaction by a simple microscopy-based assay. Hence both qualitative features, such as patterns of localization can be assessed, as well as the quantitative strength of the interaction.
Molecular Biology, Issue 68, Grb2, cDNA preparation, high-throughput, high-content screening, signal transduction, expression cloning, 96-well
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
The Cell-based L-Glutathione Protection Assays to Study Endocytosis and Recycling of Plasma Membrane Proteins
Authors: Kristine M. Cihil, Agnieszka Swiatecka-Urban.
Institutions: Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine.
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Basic Protocol, Issue 82, Endocytosis, recycling, plasma membrane, cell surface, EZLink, Sulfo-NHS-SS-Biotin, L-Glutathione, GSH, thiol group, disulfide bond, epithelial cells, cell polarization
Play Button
Production of Disulfide-stabilized Transmembrane Peptide Complexes for Structural Studies
Authors: Pooja Sharma, Mariam Kaywan-Lutfi, Logesvaran Krshnan, Eamon F. X. Byrne, Melissa Joy Call, Matthew Edwin Call.
Institutions: The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne.
Physical interactions among the lipid-embedded alpha-helical domains of membrane proteins play a crucial role in folding and assembly of membrane protein complexes and in dynamic processes such as transmembrane (TM) signaling and regulation of cell-surface protein levels. Understanding the structural features driving the association of particular sequences requires sophisticated biophysical and biochemical analyses of TM peptide complexes. However, the extreme hydrophobicity of TM domains makes them very difficult to manipulate using standard peptide chemistry techniques, and production of suitable study material often proves prohibitively challenging. Identifying conditions under which peptides can adopt stable helical conformations and form complexes spontaneously adds a further level of difficulty. Here we present a procedure for the production of homo- or hetero-dimeric TM peptide complexes from materials that are expressed in E. coli, thus allowing incorporation of stable isotope labels for nuclear magnetic resonance (NMR) or non-natural amino acids for other applications relatively inexpensively. The key innovation in this method is that TM complexes are produced and purified as covalently associated (disulfide-crosslinked) assemblies that can form stable, stoichiometric and homogeneous structures when reconstituted into detergent, lipid or other membrane-mimetic materials. We also present carefully optimized procedures for expression and purification that are equally applicable whether producing single TM domains or crosslinked complexes and provide advice for adapting these methods to new TM sequences.
Biochemistry, Issue 73, Structural Biology, Chemistry, Chemical Engineering, Biophysics, Genetics, Molecular Biology, Membrane Proteins, Proteins, Molecular Structure, transmembrane domain, peptide chemistry, membrane protein structure, immune receptors, reversed-phase HPLC, HPLC, peptides, lipids, protein, cloning, TFA Elution, CNBr Digestion, NMR, expression, cell culture
Play Button
Identification of Post-translational Modifications of Plant Protein Complexes
Authors: Sophie J. M. Piquerez, Alexi L. Balmuth, Jan Sklenář, Alexandra M.E. Jones, John P. Rathjen, Vardis Ntoukakis.
Institutions: University of Warwick, Norwich Research Park, The Australian National University.
Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.
Plant Biology, Issue 84, plant-microbe interactions, protein complex purification, mass spectrometry, protein phosphorylation, Prf, Pto, AvrPto, AvrPtoB
Play Button
Activation and Measurement of NLRP3 Inflammasome Activity Using IL-1β in Human Monocyte-derived Dendritic Cells
Authors: Melissa V. Fernandez, Elizabeth A. Miller, Nina Bhardwaj.
Institutions: New York University School of Medicine, Mount Sinai Medical Center, Mount Sinai Medical Center.
Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control1,2 . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection1-5. Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion6. Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.
Immunology, Issue 87, NLRP3, inflammasome, IL-1beta, Interleukin-1 beta, dendritic, cell, Nigericin, Toll-Like Receptor 8, TLR8, R848, Monocyte Derived Dendritic Cells
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
Play Button
One-channel Cell-attached Patch-clamp Recording
Authors: Bruce A. Maki, Kirstie A. Cummings, Meaghan A. Paganelli, Swetha E. Murthy, Gabriela K. Popescu.
Institutions: University at Buffalo, SUNY, University at Buffalo, SUNY, The Scripps Research Institute, University at Buffalo, SUNY.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.
Neuroscience, Issue 88, biophysics, ion channels, single-channel recording, NMDA receptors, gating, electrophysiology, patch-clamp, kinetic analysis
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
Play Button
A Protocol for the Production of KLRG1 Tetramer
Authors: Stephanie C. Terrizzi, Cindy Banh, Laurent Brossay.
Institutions: Brown University.
Killer cell lectin-like receptor G1 (KLRG1) is a type II transmembrane glycoprotein inhibitory receptor belonging to the C type lectin-like superfamily. KLRG1 exists both as a monomer and as a disulfide-linked homodimer. This well-conserved receptor is found on the most mature and recently activated NK cells as well as on a subset of effector/memory T cells. Using KLRG1 tetramer as well as other methods, E-, N-, and R-cadherins were identified as KLRG1 ligands. These Ca2+-dependent cell-cell adhesion molecules comprises of an extracellular domain containing five cadherin repeats responsible for cell-cell interactions, a transmembrane domain and a cytoplasmic domain that is linked to the actin cytoskeleton. Generation of the KLRG1 tetramer was essential to the identification of the KLRG1 ligands. KLRG1 tetramer is also a unique tool to elucidate the roles cadherin and KLRG1 play in regulating the immune response and tissue integrity.
Microbiology, Issue 35, Immunology, Basic Protocols, Tetramer, Inclusion Bodies, Refolding, Monomer, Flow Cytometry, KLRG1, Cadherins
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.