JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Feasibility and safety of transthoracic echocardiography-guided transcatheter closure of atrial septal defects with deficient superior-anterior rims.
PLoS ONE
Although previous studies showed that transthoracic echocardiography (TTE) can be used to guide transcatheter closure of atrial septal defect (ASD), whether TTE can be used to guide transcatheter closure of secundum ASD with a deficient superior-anterior rim is unknown and this critical issue was addressed in the present study. A total of 280 patients with secundum ASD who underwent transcatheter ASD closure were recruited and divided into groups A and B depending on ASD superior-anterior rim>4 mm (n?=?118) or ?4 mm (n?=?162). TTE was used to guide Amplatzer-type septal occluder (ASO) positioning and assess residual shunt. Procedure success was defined as no, trivial and small residual shunt immediately after the procedure as assessed by color Doppler flow imaging. Group A and group B did not differ in complication rate (8.55% vs.7.55%), procedure success rate (98.3% vs. 95.0%) or complete closure rate immediately after the procedure (89.7% vs. 89.3%) or at 6-month follow-up (98.3% vs. 96.8%). The mean procedure and fluoroscopy time in group B were much longer than those in group A. In conclusion, the absence of a sufficient superior-anterior rim in patients undergoing percutaneous closure of secundum-type ASDs using fluoroscopic and TTE guidance is associated with slightly greater device malposition and migration as well as increased procedural and fluoroscopic times, but the overall complication rate did not differ with TTE guidance when compared to historical controls that used TEE guidance.
Authors: Ioanna Kosmidou, Shannnon Wooden, Brian Jones, Thomas Deering, Andrew Wickliffe, Dan Dan.
Published: 02-26-2013
ABSTRACT
Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast.
21 Related JoVE Articles!
Play Button
Assessment of Right Ventricular Structure and Function in Mouse Model of Pulmonary Artery Constriction by Transthoracic Echocardiography
Authors: Hui-Wen Cheng, Sudeshna Fisch, Susan Cheng, Michael Bauer, Soeun Ngoy, Yiling Qiu, Jian Guan, Shikha Mishra, Christopher Mbah, Ronglih Liao.
Institutions: Harvard Medical School, Chang Gung Memorial Hospital.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential. A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software. Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC. Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.
Medicine, Issue 84, Trans-thoracic echocardiography (TTE), right ventricle (RV), pulmonary artery constriction (PAC), peak velocity, right ventricular systolic pressure (RVSP)
51041
Play Button
Transthoracic Echocardiography in Mice
Authors: Jonathan L. Respress, Xander H.T. Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
In recent years, murine models have become the primary avenue for studying the molecular mechanisms of cardiac dysfunction resulting from changes in gene expression. Transgenic and gene targeting methods can be used to generate mice with altered cardiac size and function,1-3 and as a result, in vivo techniques are needed to evaluate their cardiac phenotype. Transthoracic echocardiography, pulse wave Doppler (PWD), and tissue Doppler imaging (TDI) can be used to provide dimensional measurements of the mouse heart and to quantify the degree of cardiac systolic and diastolic performance. Two-dimensional imaging is used to detect abnormal anatomy or movements of the left ventricle, whereas M-mode echo is used for quantification of cardiac dimensions and contractility.4,5 In addition, PWD is used to quantify localized velocity of turbulent flow,6 whereas TDI is used to measure the velocity of myocardial motion.7 Thus, transthoracic echocardiography offers a comprehensive method for the noninvasive evaluation of cardiac function in mice.
Medicine, Issue 39, Echocardiography, pulse wave Doppler, tissue Doppler imaging, ultrasound
1738
Play Button
Dual-phase Cone-beam Computed Tomography to See, Reach, and Treat Hepatocellular Carcinoma during Drug-eluting Beads Transarterial Chemo-embolization
Authors: Vania Tacher, MingDe Lin, Nikhil Bhagat, Nadine Abi Jaoudeh, Alessandro Radaelli, Niels Noordhoek, Bart Carelsen, Bradford J. Wood, Jean-François Geschwind.
Institutions: The Johns Hopkins Hospital, Philips Research North America, National Institutes of Health, Philips Healthcare.
The advent of cone-beam computed tomography (CBCT) in the angiography suite has been revolutionary in interventional radiology. CBCT offers 3 dimensional (3D) diagnostic imaging in the interventional suite and can enhance minimally-invasive therapy beyond the limitations of 2D angiography alone. The role of CBCT has been recognized in transarterial chemo-embolization (TACE) treatment of hepatocellular carcinoma (HCC). The recent introduction of a CBCT technique: dual-phase CBCT (DP-CBCT) improves intra-arterial HCC treatment with drug-eluting beads (DEB-TACE). DP-CBCT can be used to localize liver tumors with the diagnostic accuracy of multi-phasic multidetector computed tomography (M-MDCT) and contrast enhanced magnetic resonance imaging (CE-MRI) (See the tumor), to guide intra-arterially guidewire and microcatheter to the desired location for selective therapy (Reach the tumor), and to evaluate treatment success during the procedure (Treat the tumor). The purpose of this manuscript is to illustrate how DP-CBCT is used in DEB-TACE to see, reach, and treat HCC.
Medicine, Issue 82, Carcinoma, Hepatocellular, Tomography, X-Ray Computed, Surgical Procedures, Minimally Invasive, Digestive System Diseases, Diagnosis, Therapeutics, Surgical Procedures, Operative, Equipment and Supplies, Transarterial chemo-embolization, Hepatocellular carcinoma, Dual-phase cone-beam computed tomography, 3D roadmap, Drug-Eluting Beads
50795
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
Myocardial Infarction and Functional Outcome Assessment in Pigs
Authors: Stefan Koudstaal, Sanne J. Jansen of Lorkeers, Johannes M.I.H. Gho, Gerardus P.J van Hout, Marlijn S. Jansen, Paul F. Gründeman, Gerard Pasterkamp, Pieter A. Doevendans, Imo E. Hoefer, Steven A.J. Chamuleau.
Institutions: University Medical Center Utrecht, Interuniversity Cardiology Institute of the Netherlands.
Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents.
Medicine, Issue 86, myocardial infarction (MI), AMI, large animal model, pig, translational medicine, ischemic heart disease
51269
Play Button
Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
Authors: Thomas Z. Thompson, Farres Obeidin, Alisa A. Davidoff, Cody L. Hightower, Christohper Z. Johnson, Sonya L. Rice, Rebecca-Lyn Sokolove, Brandon K. Taylor, John M. Tuck, William G. Pearson, Jr..
Institutions: Georgia Regents University, New York University, Georgia Regents University, Georgia Regents University.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference. To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics. Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding). Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.
Medicine, Issue 87, videofluoroscopy, modified barium swallow studies, hyolaryngeal kinematics, deglutition, dysphagia, dysphagia research, hyolaryngeal complex
51476
Play Button
Ultrasound-guided Transthoracic Intramyocardial Injection in Mice
Authors: Terence W. Prendiville, Qing Ma, Zhiqiang Lin, Pingzhu Zhou, Aibin He, William T. Pu.
Institutions: Boston Children's Hospital, Harvard University.
Murine models of cardiovascular disease are important for investigating pathophysiological mechanisms and exploring potential regenerative therapies. Experiments involving myocardial injection are currently performed by direct surgical access through a thoracotomy. While convenient when performed at the time of another experimental manipulation such as coronary artery ligation, the need for an invasive procedure for intramyocardial delivery limits potential experimental designs. With ever improving ultrasound resolution and advanced noninvasive imaging modalities, it is now feasible to routinely perform ultrasound-guided, percutaneous intramyocardial injection. This modality efficiently and reliably delivers agents to a targeted region of myocardium. Advantages of this technique include the avoidance of surgical morbidity, the facility to target regions of myocardium selectively under ultrasound guidance, and the opportunity to deliver injectate to the myocardium at multiple, predetermined time intervals. With practiced technique, complications from intramyocardial injection are rare, and mice quickly return to normal activity on recovery from anesthetic. Following the steps outlined in this protocol, the operator with basic echocardiography experience can quickly become competent in this versatile, minimally invasive technique.
Medicine, Issue 90, microinjection, mouse, echocardiography, transthoracic, myocardium, percutaneous administration
51566
Play Button
Implantation of Total Artificial Heart in Congenital Heart Disease
Authors: Iki Adachi, David S. L. Morales.
Institutions: Texas Children's Hospital, Baylor College of Medicine, The University of Cincinnati College of Medicine.
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
Medicine, Issue 89, total artificial heart, transposition of the great arteries, congenital heart disease, aortic insufficiency, ventricular outflow tract obstruction, conduit obstruction, heart failure
51569
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Inchworming: A Novel Motor Stereotypy in the BTBR T+ Itpr3tf/J Mouse Model of Autism
Authors: Jacklyn D. Smith, Jong M. Rho, Susan A. Masino, Richelle Mychasiuk.
Institutions: University of Calgary Faculty of Medicine, Trinity College.
Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental disorder characterized by decreased reciprocal social interaction, abnormal communication, and repetitive behaviors with restricted interest. As diagnosis is based on clinical criteria, any potentially relevant rodent models of this heterogeneous disorder should ideally recapitulate these diverse behavioral traits. The BTBR T+ Itpr3tf/J (BTBR) mouse is an established animal model of ASD, displaying repetitive behaviors such as increased grooming, as well as cognitive inflexibility. With respect to social interaction and interest, the juvenile play test has been employed in multiple rodent models of ASD. Here, we show that when BTBR mice are tested in a juvenile social interaction enclosure containing sawdust bedding, they display a repetitive synchronous digging motion. This repetitive motor behavior, referred to as "inchworming," was named because of the stereotypic nature of the movements exhibited by the mice while moving horizontally across the floor. Inchworming mice must use their fore- and hind-limbs in synchrony to displace the bedding, performing a minimum of one inward and one outward motion. Although both BTBR and C56BL/6J (B6) mice exhibit this behavior, BTBR mice demonstrate a significantly higher duration and frequency of inchworming and a decreased latency to initiate inchworming when placed in a bedded enclosure. We conclude that this newly described behavior provides a measure of a repetitive motor stereotypy that can be easily measured in animal models of ASD.
Behavior, Issue 89, mice, inbred C57BL, social behavior, animal models, autism, BTBR, motor stereotypy, repetitive
50791
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
50377
Play Button
Protocol for Relative Hydrodynamic Assessment of Tri-leaflet Polymer Valves
Authors: Sharan Ramaswamy, Manuel Salinas, Rob Carrol, Karla Landaburo, Xavier Ryans, Cynthia Crespo, Ailyn Rivero, Faris Al-Mousily, Curt DeGroff, Mark Bleiweis, Hitomi Yamaguchi.
Institutions: Florida International University, University of Florida , University of Florida , Jeddah, Saudi Arabia.
Limitations of currently available prosthetic valves, xenografts, and homografts have prompted a recent resurgence of developments in the area of tri-leaflet polymer valve prostheses. However, identification of a protocol for initial assessment of polymer valve hydrodynamic functionality is paramount during the early stages of the design process. Traditional in vitro pulse duplicator systems are not configured to accommodate flexible tri-leaflet materials; in addition, assessment of polymer valve functionality needs to be made in a relative context to native and prosthetic heart valves under identical test conditions so that variability in measurements from different instruments can be avoided. Accordingly, we conducted hydrodynamic assessment of i) native (n = 4, mean diameter, D = 20 mm), ii) bi-leaflet mechanical (n= 2, D = 23 mm) and iii) polymer valves (n = 5, D = 22 mm) via the use of a commercially available pulse duplicator system (ViVitro Labs Inc, Victoria, BC) that was modified to accommodate tri-leaflet valve geometries. Tri-leaflet silicone valves developed at the University of Florida comprised the polymer valve group. A mixture in the ratio of 35:65 glycerin to water was used to mimic blood physical properties. Instantaneous flow rate was measured at the interface of the left ventricle and aortic units while pressure was recorded at the ventricular and aortic positions. Bi-leaflet and native valve data from the literature was used to validate flow and pressure readings. The following hydrodynamic metrics were reported: forward flow pressure drop, aortic root mean square forward flow rate, aortic closing, leakage and regurgitant volume, transaortic closing, leakage, and total energy losses. Representative results indicated that hydrodynamic metrics from the three valve groups could be successfully obtained by incorporating a custom-built assembly into a commercially available pulse duplicator system and subsequently, objectively compared to provide insights on functional aspects of polymer valve design.
Bioengineering, Issue 80, Cardiovascular Diseases, Circulatory and Respiratory Physiological Phenomena, Fluid Mechanics and Thermodynamics, Mechanical Engineering, valve disease, valve replacement, polymer valves, pulse duplicator, modification, tri-leaflet geometries, hydrodynamic studies, relative assessment, medicine, bioengineering, physiology
50335
Play Button
High-frequency High-resolution Echocardiography: First Evidence on Non-invasive Repeated Measure of Myocardial Strain, Contractility, and Mitral Regurgitation in the Ischemia-reperfused Murine Heart
Authors: Surya C. Gnyawali, Sashwati Roy, Jason Driggs, Savita Khanna, Thomas Ryan, Chandan K. Sen.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Ischemia-reperfusion (IR) was surgically performed in murine hearts which were then subjected to repeated imaging to monitor temporal changes in functional parameters of key clinical significance. Two-dimensional movies were acquired at high frame rate (8 kHz) and were utilized to estimate high-quality myocardial strain. Two-dimensional elastograms (strain images), as well as strain profiles, were visualized. Results were powerful in quantitatively assessing IR-induced changes in cardiac events including left-ventricular (LV) contraction, LV relaxation and isovolumetric phases of both pre-IR and post-IR beating hearts in intact mice. In addition, compromised sector-wise wall motion and anatomical deformation in the infarcted myocardium were visualized. The elastograms were uniquely able to provide information on the following parameters in addition to standard physiological indices that are known to be affected by myocardial infarction in the mouse: internal diameters of mitral valve orifice and aorta, effective regurgitant orifice, myocardial strain (circumferential as well as radial), turbulence in blood flow pattern as revealed by the color Doppler movies and velocity profiles, asynchrony in LV sector, and changes in the length and direction of vectors demonstrating slower and asymmetrical wall movement. This work emphasizes on the visual demonstration of how such analyses are performed.
JoVE Medicine, Issue 41, ischemia-reperfused murine heart, high frequency ultrasound, heart contractility (dP/dt), mitral regurgitation
1781
Play Button
Murine Echocardiography and Ultrasound Imaging
Authors: Andrew Pistner, Stephen Belmonte, Tonya Coulthard, Burns C. Blaxall.
Institutions: University of Rochester, University of Rochester, Visualsonics, University of Rochester.
Rodent models of cardiac pathophysiology represent a valuable research tool to investigate mechanism of disease as well as test new therapeutics.1 Echocardiography provides a powerful, non-invasive tool to serially assess cardiac morphometry and function in a living animal.2 However, using this technique on mice poses unique challenges owing to the small size and rapid heart rate of these animals.3 Until recently, few ultrasound systems were capable of performing quality echocardiography on mice, and those generally lacked the image resolution and frame rate necessary to obtain truly quantitative measurements. Newly released systems such as the VisualSonics Vevo2100 provide new tools for researchers to carefully and non-invasively investigate cardiac function in mice. This system generates high resolution images and provides analysis capabilities similar to those used with human patients. Although color Doppler has been available for over 30 years in humans, this valuable technology has only recently been possible in rodent ultrasound.4,5 Color Doppler has broad applications for echocardiography, including the ability to quickly assess flow directionality in vessels and through valves, and to rapidly identify valve regurgitation. Strain analysis is a critical advance that is utilized to quantitatively measure regional myocardial function.6 This technique has the potential to detect changes in pathology, or resolution of pathology, earlier than conventional techniques. Coupled with the addition of three-dimensional image reconstruction, volumetric assessment of whole-organs is possible, including visualization and assessment of cardiac and vascular structures. Murine-compatible contrast imaging can also allow for volumetric measurements and tissue perfusion assessment.
Medicine, Issue 42, echocardiography, heart, mouse, strain imaging, high frequency ultrasound, contrast imaging
2100
Play Button
Microvascular Decompression: Salient Surgical Principles and Technical Nuances
Authors: Jonathan Forbes, Calvin Cooper, Walter Jermakowicz, Joseph Neimat, Peter Konrad.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center.
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. Surgical options for management include ablative procedures (e.g., radiosurgery, percutaneous radiofrequency lesioning, balloon compression, glycerol rhizolysis, etc.) and microvascular decompression. Ablative procedures fail to address the root cause of the disorder and are less effective at preventing recurrence of symptoms over the long term than microvascular decompression. However, microvascular decompression is inherently more invasive than ablative procedures and is associated with increased surgical risks. Previous studies have demonstrated a correlation between surgeon experience and patient outcome in microvascular decompression. In this series of 59 patients operated on by two neurosurgeons (JSN and PEK) since 2006, 93% of patients demonstrated substantial improvement in their trigeminal neuralgia following the procedure—with follow-up ranging from 6 weeks to 2 years. Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
Medicine, Issue 53, microvascular, decompression, trigeminal, neuralgia, operation, video
2590
Play Button
Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures
Authors: David Filgueiras-Rama, Alejandro Estrada, Josh Shachar, Sergio Castrejón, David Doiny, Marta Ortega, Eli Gang, José L. Merino.
Institutions: La Paz University Hospital, Magnetecs Corp., Geffen School of Medicine at UCLA Los Angeles.
New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.
Medicine, Issue 74, Anatomy, Physiology, Biomedical Engineering, Surgery, Cardiology, catheter ablation, remote navigation, magnetic, robotic, catheter, positioning, electrophysiology, clinical techniques
3658
Play Button
Murine Fetal Echocardiography
Authors: Gene H. Kim.
Institutions: University of Chicago.
Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development 1-3. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death 4. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies 5,6. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available 6-10. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures 11.
Biomedical Engineering, Issue 72, Medicine, Molecular Biology, Anatomy, Physiology, Cardiology, echocardiography, echocardiograph, cardiac development, pulse Doppler, non-invasive imaging, ultrasound, cardiovascular disease, cardiac structure, imaging, transgenic mice, mouse, animal model
4416
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
52127
Play Button
The WATCHMAN Left Atrial Appendage Closure Device for Atrial Fibrillation
Authors: Sven Möbius-Winkler, Marcus Sandri, Norman Mangner, Phillip Lurz, Ingo Dähnert, Gerhard Schuler.
Institutions: University of Leipzig Heart Center.
Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting an estimated 6 million people in the United States 1. Since AF affects primarily elderly people, its prevalence increases parallel with age. As such, it is expected that 15.9 million Americans will be affected by the year 2050 2. Ischemic stroke occurs in 5% of non-anticoagulated AF patients each year. Current treatments for AF include rate control, rhythm control and prevention of stroke 3. The American College of Cardiology, American Heart Association, and European Society of Cardiology currently recommended rate control as the first course of therapy for AF 3. Rate control is achieved by administration of pharmacological agents, such as β-blockers, that lower the heart rate until it reaches a less symptomatic state 3. Rhythm control aims to return the heart to its normal sinus rhythm and is typically achieved through administration of antiarrhythmic drugs such as amiodarone, electrical cardioversion or ablation therapy. Rhythm control methods, however, have not been demonstrated to be superior to rate-control methods 4-6. In fact, certain antiarrhythmic drugs have been shown to be associated with higher hospitalization rates, serious adverse effects 3, or even increases in mortality in patients with structural heart defects 7. Thus, treatment with antiarrhythmics is more often used when rate-control drugs are ineffective or contraindicated. Rate-control and antiarrhythmic agents relieve the symptoms of AF, including palpitations, shortness of breath, and fatigue 8, but don't reliably prevent thromboembolic events 6. Treatment with the anticoagulant drug warfarin significantly reduces the rate of stroke or embolism 9,10. However, because of problems associated with its use, fewer than 50% of patients are treated with it. The therapeutic dose is affected by drug, dietary, and metabolic interactions, and thus requires detailed monitoring. In addition, warfarin has the potential to cause severe, sometimes lethal, bleeding 2. As an alternative, aspirin is commonly prescribed. While aspirin is typically well tolerated, it is far less effective at preventing stroke 10. Other alternatives to warfarin, such as dabigatran 11 or rivaroxaban 12 demonstrate non-inferiority to warfarin with respect to thromboembolic events (in fact, dabigatran given as a high dose of 150 mg twice a day has shown superiority). While these drugs have the advantage of eliminating dietary concerns and eliminating the need for regular blood monitoring, major bleeding and associated complications, while somewhat less so than with warfarin, remain an issue 13-15. Since 90% of AF-associated strokes result from emboli that arise from the left atrial appendage (LAA) 2, one alternative approach to warfarin therapy has been to exclude the LAA using an implanted device to trap blood clots before they exit. Here, we demonstrate a procedure for implanting the WATCHMAN Left Atrial Appendage Closure Device. A transseptal cannula is inserted through the femoral vein, and under fluoroscopic guidance, inter-atrial septum is crossed. Once access to the left atrium has been achieved, a guidewire is placed in the upper pulmonary vein and the WATCHMAN Access Sheath and dilator are advanced over the wire into the left atrium. The guidewire is removed, and the access sheath is carefully advanced into the distal portion of the LAA over a pigtail catheter. The WATCHMAN Delivery System is prepped, inserted into the access sheath, and slowly advanced. The WATCHMAN device is then deployed into the LAA. The device release criteria are confirmed via fluoroscopy and transesophageal echocardiography (TEE) and the device is released.
Medicine, Issue 60, atrial fibrillation, cardiology, cardiac, interventional cardiology, medical procedures, medicine, WATCHMAN, medical device, left atrial appendage
3671
Play Button
A New Single Chamber Implantable Defibrillator with Atrial Sensing: A Practical Demonstration of Sensing and Ease of Implantation
Authors: Dietmar Bänsch, Ralph Schneider, Ibrahim Akin, Cristoph A. Nienaber.
Institutions: University Hospital of Rostock, Germany.
Implantable cardioverter-defibrillators (ICDs) terminate ventricular tachycardia (VT) and ventricular fibrillation (VF) with high efficacy and can protect patients from sudden cardiac death (SCD). However, inappropriate shocks may occur if tachycardias are misdiagnosed. Inappropriate shocks are harmful and impair patient quality of life. The risk of inappropriate therapy increases with lower detection rates programmed in the ICD. Single-chamber detection poses greater risks for misdiagnosis when compared with dual-chamber devices that have the benefit of additional atrial information. However, using a dual-chamber device merely for the sake of detection is generally not accepted, since the risks associated with the second electrode may outweigh the benefits of detection. Therefore, BIOTRONIK developed a ventricular lead called the LinoxSMART S DX, which allows for the detection of atrial signals from two electrodes positioned at the atrial part of the ventricular electrode. This device contains two ring electrodes; one that contacts the atrial wall at the junction of the superior vena cava (SVC) and one positioned at the free floating part of the electrode in the atrium. The excellent signal quality can only be achieved by a special filter setting in the ICD (Lumax 540 and 740 VR-T DX, BIOTRONIK). Here, the ease of implantation of the system will be demonstrated.
Medicine, Issue 60, Implantable defibrillator, dual chamber, single chamber, tachycardia detection
3750
Play Button
Catheter Ablation in Combination With Left Atrial Appendage Closure for Atrial Fibrillation
Authors: Martin J. Swaans, Arash Alipour, Benno J.W.M. Rensing, Martijn C. Post, Lucas V.A. Boersma.
Institutions: St. Antonius Hospital, The Netherlands.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting millions of individuals worldwide 1-3. The rapid, irregular, and disordered electrical activity in the atria gives rise to palpitations, fatigue, dyspnea, chest pain and dizziness with or without syncope 4, 5. Patients with AF have a five-fold higher risk of stroke 6. Oral anticoagulation (OAC) with warfarin is commonly used for stroke prevention in patients with AF and has been shown to reduce the risk of stroke by 64% 7. Warfarin therapy has several major disadvantages, however, including bleeding, non-tolerance, interactions with other medications and foods, non-compliance and a narrow therapeutic range 8-11. These issues, together with poor appreciation of the risk-benefit ratio, unawareness of guidelines, or absence of an OAC monitoring outpatient clinic may explain why only 30-60% of patients with AF are prescribed this drug 8. The problems associated with warfarin, combined with the limited efficacy and/or serious side effects associated with other medications used for AF 12,13, highlight the need for effective non-pharmacological approaches to treatment. One such approach is catheter ablation (CA), a procedure in which a radiofrequency electrical current is applied to regions of the heart to create small ablation lesions that electrically isolate potential AF triggers 4. CA is a well-established treatment for AF symptoms 14, 15, that may also decrease the risk of stroke. Recent data showed a significant decrease in the relative risk of stroke and transient ischemic attack events among patients who underwent ablation compared with those undergoing antiarrhythmic drug therapy 16. Since the left atrial appendage (LAA) is the source of thrombi in more than 90% of patients with non-valvular atrial fibrillation 17, another approach to stroke prevention is to physically block clots from exiting the LAA. One method for occluding the LAA is via percutaneous placement of the WATCHMAN LAA closure device. The WATCHMAN device resembles a small parachute. It consists of a nitinol frame covered by fabric polyethyl terephthalate that prevents emboli, but not blood, from exiting during the healing process. Fixation anchors around the perimeter secure the device in the LAA (Figure 1). To date, the WATCHMAN is the only implanted percutaneous device for which a randomized clinical trial has been reported. In this study, implantation of the WATCHMAN was found to be at least as effective as warfarin in preventing stroke (all-causes) and death (all-causes) 18. This device received the Conformité Européenne (CE) mark for use in the European Union for warfarin eligible patients and in those who have a contraindication to anticoagulation therapy 19. Given the proven effectiveness of CA to alleviate AF symptoms and the promising data with regard to reduction of thromboembolic events with both CA and WATCHMAN implantation, combining the two procedures is hoped to further reduce the incidence of stroke in high-risk patients while simultaneously relieving symptoms. The combined procedure may eventually enable patients to undergo implantation of the WATCHMAN device without subsequent warfarin treatment, since the CA procedure itself reduces thromboembolic events. This would present an avenue of treatment previously unavailable to patients ineligible for warfarin treatment because of recurrent bleeding 20 or other warfarin-associated problems. The combined procedure is performed under general anesthesia with biplane fluoroscopy and TEE guidance. Catheter ablation is followed by implantation of the WATCHMAN LAA closure device. Data from a non-randomized trial with 10 patients demonstrates that this procedure can be safely performed in patients with a CHADS2 score of greater than 1 21. Further studies to examine the effectiveness of the combined procedure in reducing symptoms from AF and associated stroke are therefore warranted.
Medicine, Issue 72, Anatomy, Physiology, Biomedical Engineering, Immunology, Cardiology, Surgery, catheter ablation, WATCHMAN, LAA occlusion, atrial fibrillation, left atrial appendage, warfarin, oral anticoagulation alternatives, catheterization, ischemia, stroke, heart, vein, clinical, surgical device, surgical techniques, Vitamin K antagonist
3818
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.