JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement.
The intranuclear positioning of chromosomes (CHRs) is a well-documented fact; however, mechanisms directing such ordering remain unclear. Unlike somatic cells, human spermatozoa contain distinct spatial markers and have asymmetric nuclei which make them a unique model for localizing CHR territories and matching peri-centromere domains. In this study, we established statistically preferential longitudinal and lateral positioning for eight CHRs. Both parameters demonstrated a correlation with the CHR gene densities but not with their sizes. Intranuclear non-random positioning of the CHRs was found to be driven by a specific linear order of centromeres physically interconnected in continuous arrays. In diploid spermatozoa, linear order of peri-centromeres was identical in two genome sets and essentially matched the arrangement established for haploid cells. We propose that the non-random longitudinal order of CHRs in human spermatozoa is generated during meiotic stages of spermatogenesis. The specific arrangement of sperm CHRs may serve as an epigenetic basis for differential transcription/replication and direct spatial CHR organization during early embryogenesis.
Authors: Charline Walker, Greg S. Walsh, Cecilia Moens.
Published: 06-30-2009
Heterozygosity in diploid eukaryotes often makes genetic studies cumbersome. Methods that produce viable homozygous diploid offspring directly from heterozygous females allow F1 mutagenized females to be screened directly for deleterious mutations in an accelerated forward genetic screen. Streisinger et al.1,2 described methods for making gynogenetic (homozygous) diploid zebrafish by activating zebrafish eggs with ultraviolet light-inactivated sperm and preventing either the second meiotic or the first zygotic cell division using physical treatments (heat or pressure) that deploymerize microtubules. The "early pressure" (EP) method blocks the meiosis II, which occurs shortly after fertilization. The EP method produces a high percentage of viable embryos that can develop to fertile adults of either sex. The method generates embryos that are homozygous at all loci except those that were separated from their centromere by recombination during meiosis I. Homozygous mutations are detected in EP clutches at between 50% for centromeric loci and less than 1% for telomeric loci. This method is reproduced verbatim from the Zebrafish Book3.
22 Related JoVE Articles!
Play Button
Slide Preparation Method to Preserve Three-dimensional Chromatin Architecture of Testicular Germ Cells
Authors: Satoshi H. Namekawa.
Institutions: Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine.
During testicular germ cell differentiation, the structure of nuclear chromatin dynamically changes. The following describes a method designed to preserve the three-dimensional chromatin arrangement of testicular germ cells found in mice; this method has been termed as the three-dimensional (3D) slide method. In this method, testicular tubules are directly treated with a permeabilization step that removes cytoplasmic material, followed by a fixation step that fixes nuclear materials. Tubules are then dissociated, the cell suspension is cytospun, and cells adhere to slides. This method improves sensitivity towards detection of subnuclear structures and is applicable for immunofluorescence, DNA, and RNA fluorescence in situ hybridization (FISH) and the combination of these detection methods. As an example of a possible application of the 3D slide method, a Cot-1 RNA FISH is shown to detect nascent RNAs. The 3D slide method will facilitate the detailed examination of spatial relationships between chromatin structure, DNA, and RNA during testicular germ cell differentiation.
Basic Protocol, Issue 83, Chromatin, Germ cells, Sex chromosomes, Testis, Meiotic sex chromosome inactivation, Postmeiotic sex chromatin
Play Button
Cytological Analysis of Spermatogenesis: Live and Fixed Preparations of Drosophila Testes
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Institutions: Vanderbilt University Medical Center.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Basic Protocol, Issue 83, Drosophila melanogaster, dissection, testes, spermatogenesis, meiosis, germ cells, phase-contrast microscopy, immunofluorescence
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency
Authors: Jason M. O'Brien, Marc A. Beal, John D. Gingerich, Lynda Soper, George R. Douglas, Carole L. Yauk, Francesco Marchetti.
Institutions: Environmental Health Centre.
De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.
Genetics, Issue 90, sperm, spermatogonia, male germ cells, spermatogenesis, de novo mutation, OECD TG 488, transgenic rodent mutation assay, N-ethyl-N-nitrosourea, genetic toxicology
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Rapid Analysis of Chromosome Aberrations in Mouse B Lymphocytes by PNA-FISH
Authors: Sarah M. Misenko, Samuel F. Bunting.
Institutions: Rutgers, the State University of New Jersey.
Defective DNA repair leads to increased genomic instability, which is the root cause of mutations that lead to tumorigenesis. Analysis of the frequency and type of chromosome aberrations in different cell types allows defects in DNA repair pathways to be elucidated. Understanding mammalian DNA repair biology has been greatly helped by the production of mice with knockouts in specific genes. The goal of this protocol is to quantify genomic instability in mouse B lymphocytes. Labeling of the telomeres using PNA-FISH probes (peptide nucleic acid - fluorescent in situ hybridization) facilitates the rapid analysis of genomic instability in metaphase chromosome spreads. B cells have specific advantages relative to fibroblasts, because they have normal ploidy and a higher mitotic index. Short-term culture of B cells therefore enables precise measurement of genomic instability in a primary cell population which is likely to have fewer secondary genetic mutations than what is typically found in transformed fibroblasts or patient cell lines.
Immunology, Issue 90, genomic instability, DNA repair, mouse, metaphase spread, FISH, primary culture
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Separation of Spermatogenic Cell Types Using STA-PUT Velocity Sedimentation
Authors: Jessica M Bryant, Mirella L Meyer-Ficca, Vanessa M Dang, Shelley L Berger, Ralph G Meyer.
Institutions: University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types - both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa) - studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells - in this case, from the testes - through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 108 cells/spermatogenic cell type from a starting population of 7-8 x 108 cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.
Cellular Biology, Issue 80, Developmental Biology, Spermatogenesis, STA-PUT, cell separation, Spermatogenesis, spermatids, spermatocytes, spermatogonia, sperm, velocity sedimentation
Play Button
Cell Death Associated with Abnormal Mitosis Observed by Confocal Imaging in Live Cancer Cells
Authors: Asher Castiel, Leonid Visochek, Leonid Mittelman, Yael Zilberstein, Francoise Dantzer, Shai Izraeli, Malka Cohen-Armon.
Institutions: Sheba Medical Center, Tel-Aviv University, Tel-Aviv University, Tel-Aviv University, Ecole Superieure de Biotechnologie Strasbourg, Tel-Aviv University.
Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells. Most solid human cancers have high occurrence of extra-centrosomes. The activity of PJ-34 was documented in real-time by confocal imaging of live human breast cancer MDA-MB-231 cells transfected with vectors encoding for fluorescent γ-tubulin, which is highly abundant in the centrosomes and for fluorescent histone H2b present in the chromosomes. Aberrant chromosomes arrangements and de-clustered γ-tubulin foci representing declustered centrosomes were detected in the transfected MDA-MB-231 cells after treatment with PJ-34. Un-clustered extra-centrosomes in the two spindle poles preceded their cell death. These results linked for the first time the recently detected exclusive cytotoxic activity of PJ-34 in human cancer cells with extra-centrosomes de-clustering in mitosis, and mitotic failure leading to cell death. According to previous findings observed by confocal imaging of fixed cells, PJ-34 exclusively eradicated cancer cells with multi-centrosomes without impairing normal cells undergoing mitosis with two centrosomes and bi-focal spindles. This cytotoxic activity of PJ-34 was not shared by other potent PARP1 inhibitors, and was observed in PARP1 deficient MEF harboring extracentrosomes, suggesting its independency of PARP1 inhibition. Live confocal imaging offered a useful tool for identifying new molecules eradicating cells during mitosis.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Genetics, Neoplastic Processes, Pharmacologic Actions, Live confocal imaging, Extra-centrosomes clustering/de-clustering, Mitotic Catastrophe cell death, PJ-34, myocardial infarction, microscopy, imaging
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Fluorescence in situ hybridization (FISH) Protocol in Human Sperm
Authors: Zaida Sarrate, Ester Anton.
Institutions: Universitat Autónoma de Barcelona.
Aneuploidies are the most frequent chromosomal abnormalities in humans. Most of these abnormalities result from meiotic errors during the gametogenic process in the parents. In human males, these errors can lead to the production of spermatozoa with numerical chromosome abnormalities which represent an increased risk of transmitting these anomalies to the offspring. For this reason, the technique of fluorescence in situ hybridization (FISH) on sperm nuclei has become a protocol widely incorporated in the context of clinical diagnosis. This practice provides an estimate of the frequencies of numerical chromosome abnormalities in the gametes of the patients that seek for genetic reproductive advice. To date, the chromosomes most frequently included in sperm FISH analysis are chromosomes X, Y, 13, 18 and 21. This video-article describes, step by step, how to process and fix a human semen sample, how to decondense and denature the sperm chromatin, how to proceed to obtain sperm FISH preparations, and how to visualize the results at the microscope. Special remarks of the most relevant steps are given to achieve the best results.
Cellular Biology, Issue 31, Fluorescence in situ hybridization, human, infertility, numerical chromosome abnormalities, spermatozoa
Play Button
Isolation and In vitro Activation of Caenorhabditis elegans Sperm
Authors: Gunasekaran Singaravelu, Indrani Chatterjee, Matthew R. Marcello, Andrew Singson.
Institutions: Rutgers University.
Males and hermaphrodites are the two naturally found sexual forms in the nematode C. elegans. The amoeboid sperm are produced by both males and hermaphrodites. In the earlier phase of gametogenesis, the germ cells of hermaphrodites differentiate into limited number of sperm - around 300 - and are stored in a small 'bag' called the spermatheca. Later on, hermaphrodites continually produce oocytes1. In contrast, males produce exclusively sperm throughout their adulthood. The males produce so much sperm that it accounts for >50% of the total cells in a typical adult worm2. Therefore, isolating sperm from males is easier than from that of hermaphrodites. Only a small proportion of males are naturally generated due to spontaneous non-disjunction of X chromosome3. Crossing hermaphrodites with males or more conveniently, the introduction of mutations to give rise to Him (High Incidence of Males) phenotype are some of strategies through which one can enrich the male population3. Males can be easily distinguished from hermaphrodites by observing the tail morphology4. Hermaphrodite's tail is pointed, whereas male tail is rounded with mating structures. Cutting the tail releases vast number of spermatids stored inside the male reproductive tract. Dissection is performed under a stereo microscope using 27 gauge needles. Since spermatids are not physically connected with any other cells, hydraulic pressure expels internal contents of male body, including spermatids2. Males are directly dissected on a small drop of 'Sperm Medium'. Spermatids are sensitive to alteration in the pH. Hence, HEPES, a compound with good buffering capacity is used in sperm media. Glucose and other salts present in sperm media help maintain osmotic pressure to maintain the integrity of sperm. Post-meiotic differentiation of spermatids into spermatozoa is termed spermiogenesis or sperm activation. Shakes5, and Nelson6 previously showed that round spermatids can be induced to differentiate into spermatozoa by adding various activating compounds including Pronase E. Here we demonstrate in vitro spermiogenesis of C. elegans spermatids using Pronase E. Successful spermiogenesis is pre-requisite for fertility and hence the mutants defective in spermiogenesis are sterile. Hitherto several mutants have been shown to be defective specifically in spermiogenesis process7. Abnormality found during in vitro activation of novel Spe (Spermatogenesis defective) mutants would help us discover additional players participating in this event.
Developmental Biology, Issue 47, spermatid, spermatozoa, spermiogenesis, protease, pseudopod, nematode
Play Button
Mouse Oocyte Microinjection, Maturation and Ploidy Assessment
Authors: Paula Stein, Karen Schindler.
Institutions: University of Pennsylvania.
Mistakes in chromosome segregation lead to aneuploid cells. In somatic cells, aneuploidy is associated with cancer but in gametes, aneuploidy leads to infertility, miscarriages or developmental disorders like Down syndrome. Haploid gametes form through species-specific developmental programs that are coupled to meiosis. The first meiotic division (MI) is unique to meiosis because sister chromatids remain attached while homologous chromosomes are segregated. For reasons not fully understood, this reductional division is prone to errors and is more commonly the source of aneuploidy than errors in meiosis II (MII) or than errors in male meiosis 1,2. In mammals, oocytes arrest at prophase of MI with a large, intact germinal vesicle (GV; nucleus) and only resume meiosis when they receive ovulatory cues. Once meiosis resumes, oocytes complete MI and undergo an asymmetric cell division, arresting again at metaphase of MII. Eggs will not complete MII until they are fertilized by sperm. Oocytes also can undergo meiotic maturation using established in vitro culture conditions 3. Because generation of transgenic and gene-targeted mouse mutants is costly and can take long periods of time, manipulation of female gametes in vitro is a more economical and time-saving strategy. Here, we describe methods to isolate prophase-arrested oocytes from mice and for microinjection. Any material of choice may be introduced into the oocyte, but because meiotically-competent oocytes are transcriptionally silent 4,5 cRNA, and not DNA, must be injected for ectopic expression studies. To assess ploidy, we describe our conditions for in vitro maturation of oocytes to MII eggs. Historically, chromosome-spreading techniques are used for counting chromosome number 6. This method is technically challenging and is limited to only identifying hyperploidies. Here, we describe a method to determine hypo-and hyperploidies using intact eggs 7-8. This method uses monastrol, a kinesin-5 inhibitor, that collapses the bipolar spindle into a monopolar spindle 9 thus separating chromosomes such that individual kinetochores can readily be detected and counted by using an anti-CREST autoimmune serum. Because this method is performed in intact eggs, chromosomes are not lost due to operator error.
Cell biology, Issue 53, oocyte, microinjection, meiosis, meiotic maturation, aneuploidy
Play Button
Chromosomics: Detection of Numerical and Structural Alterations in All 24 Human Chromosomes Simultaneously Using a Novel OctoChrome FISH Assay
Authors: Zhiying Ji, Luoping Zhang.
Institutions: University of California, Berkeley .
Fluorescence in situ hybridization (FISH) is a technique that allows specific DNA sequences to be detected on metaphase or interphase chromosomes in cell nuclei1. The technique uses DNA probes with unique sequences that hybridize to whole chromosomes or specific chromosomal regions, and serves as a powerful adjunct to classic cytogenetics. For instance, many earlier studies reported the frequent detection of increased chromosome aberrations in leukemia patients related with benzene exposure, benzene-poisoning patients, and healthy workers exposed to benzene, using classic cytogenetic analysis2. Using FISH, leukemia-specific chromosomal alterations have been observed to be elevated in apparently healthy workers exposed to benzene3-6, indicating the critical roles of cytogentic changes in benzene-induced leukemogenesis. Generally, a single FISH assay examines only one or a few whole chromosomes or specific loci per slide, so multiple hybridizations need to be conducted on multiple slides to cover all of the human chromosomes. Spectral karyotyping (SKY) allows visualization of the whole genome simultaneously, but the requirement for special software and equipment limits its application7. Here, we describe a novel FISH assay, OctoChrome-FISH, which can be applied for Chromosomics, which we define here as the simultaneous analysis of all 24 human chromosomes on one slide in human studies, such as chromosome-wide aneuploidy study (CWAS)8. The basis of the method, marketed by Cytocell as the Chromoprobe Multiprobe System, is an OctoChrome device that is divided into 8 squares, each of which carries three different whole chromosome painting probes (Figure 1). Each of the three probes is directly labeled with a different colored fluorophore, green (FITC), red (Texas Red), and blue (Coumarin). The arrangement of chromosome combinations on the OctoChrome device has been designed to facilitate the identification of the non-random structural chromosome alterations (translocations) found in the most common leukemias and lymphomas, for instance t(9;22), t(15;17), t(8;21), t(14;18)9. Moreover, numerical changes (aneuploidy) in chromosomes can be detected concurrently. The corresponding template slide is also divided into 8 squares onto which metaphase spreads are bound (Figure 2), and is positioned over the OctoChrome device. The probes and target DNA are denatured at high-temperature and hybridized in a humid chamber, and then all 24 human chromosomes can be visualized simultaneously. OctoChrome FISH is a promising technique for the clinical diagnosis of leukemia and lymphoma and for detection of aneuploidies in all chromosomes. We have applied this new Chromosomic approach in a CWAS study of benzene-exposed Chinese workers8,10.
Genetics, Issue 60, Chromosomics, OctoChrome-FISH, fluorescence in situ hybridization (FISH), Chromosome-wide aneuploidy study (CWAS), aneuploidy, chromosomal translocations, leukemia, lymphoma
Play Button
Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit
Authors: Ling Liu, Steven R. Sansing, Iva S. Morse, Kathleen R. Pritchett-Corning.
Institutions: Charles River , Charles River .
Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF.
Basic Protocols, Issue 58, Cryopreservation, Sperm, In vitro fertilization (IVF), Mouse, Genetics
Play Button
Fluorescence-microscopy Screening and Next-generation Sequencing: Useful Tools for the Identification of Genes Involved in Organelle Integrity
Authors: Giovanni Stefano, Luciana Renna, Federica Brandizzi.
Institutions: Michigan State University.
This protocol describes a fluorescence microscope-based screening of Arabidopsis seedlings and describes how to map recessive mutations that alter the subcellular distribution of a specific tagged fluorescent marker in the secretory pathway. Arabidopsis is a powerful biological model for genetic studies because of its genome size, generation time, and conservation of molecular mechanisms among kingdoms. The array genotyping as an approach to map the mutation in alternative to the traditional method based on molecular markers is advantageous because it is relatively faster and may allow the mapping of several mutants in a really short time frame. This method allows the identification of proteins that can influence the integrity of any organelle in plants. Here, as an example, we propose a screen to map genes important for the integrity of the endoplasmic reticulum (ER). Our approach, however, can be easily extended to other plant cell organelles (for example see1,2), and thus represents an important step toward understanding the molecular basis governing other subcellular structures.
Genetics, Issue 62, EMS mutagenesis, secretory pathway, mapping, confocal screening
Play Button
Chromosome Replicating Timing Combined with Fluorescent In situ Hybridization
Authors: Leslie Smith, Mathew Thayer.
Institutions: Oregon Health & Science University.
Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.
Genetics, Issue 70, Biochemistry, Molecular Biology, Cellular Biology, Chromosome replication timing, fluorescent in situ hybridization, FISH, BrdU, cytogenetics, chromosome rearrangements, fluorescence microscopy
Play Button
Simple and Efficient Technique for the Preparation of Testicular Cell Suspensions
Authors: Rosana Rodríguez-Casuriaga, Gustavo A. Folle, Federico Santiñaque, Beatriz López-Carro, Adriana Geisinger.
Institutions: Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Instituto de Investigaciones Biológicas Clemente Estable, Universidad de la República.
Mammalian testes are very complex organs that contain over 30 different cell types, including somatic testicular cells and different stages of germline cells. This heterogeneity is an important drawback concerning the study of the bases of mammalian spermatogenesis, as pure or enriched cell populations in certain stages of sperm development are needed for most molecular analyses1. Various strategies such as Staput2,3, centrifugal elutriation1, and flow cytometry (FC)4,5 have been employed to obtain enriched or purified testicular cell populations in order to enable differential gene expression studies. It is required that cells are in suspension for most enrichment/ purification approaches. Ideally, the cell suspension will be representative of the original tissue, have a high proportion of viable cells and few multinucleates - which tend to form because of the syncytial nature of the seminiferous epithelium6,7 - and lack cell clumps1 . Previous reports had evidenced that testicular cell suspensions prepared by an exclusively mechanical method clumped more easily than trypsinized ones1 . On the other hand, enzymatic treatments with RNAses and/or disaggregating enzymes like trypsin and collagenase lead to specific macromolecules degradation, which is undesirable for certain downstream applications. The ideal process should be as short as possible and involve minimal manipulation, so as to achieve a good preservation of macromolecules of interest such as mRNAs. Current protocols for the preparation of cell suspensions from solid tissues are usually time-consuming, highly operator-dependent, and may selectively damage certain cell types1,8 . The protocol presented here combines the advantages of a highly reproducible and extremely brief mechanical disaggregation with the absence of enzymatic treatment, leading to good quality cell suspensions that can be used for flow cytometric analysis and sorting4, and ulterior gene expression studies9 .
Cellular Biology, Issue 78, Medicine, Biomedical Engineering, Anatomy, Physiology, Cell Separation, Flow Cytometry, Cytological Techniques, Meiosis, Spermatogenesis, Cell Biology, Flow cytometry, FACS, testis, meiosis, cell suspension, rodent, cell culture, animal model
Play Button
Measuring Intracellular Ca2+ Changes in Human Sperm using Four Techniques: Conventional Fluorometry, Stopped Flow Fluorometry, Flow Cytometry and Single Cell Imaging
Authors: Esperanza Mata-Martínez, Omar José, Paulina Torres-Rodríguez, Alejandra Solís-López, Ana A. Sánchez-Tusie, Yoloxochitl Sánchez-Guevara, Marcela B. Treviño, Claudia L. Treviño.
Institutions: Instituto de Biotecnología-Universidad Nacional Autónoma de México, Edison State College.
Spermatozoa are male reproductive cells especially designed to reach, recognize and fuse with the egg. To perform these tasks, sperm cells must be prepared to face a constantly changing environment and to overcome several physical barriers. Being in essence transcriptionally and translationally silent, these motile cells rely profoundly on diverse signaling mechanisms to orient themselves and swim in a directed fashion, and to contend with challenging environmental conditions during their journey to find the egg. In particular, Ca2+-mediated signaling is pivotal for several sperm functions: activation of motility, capacitation (a complex process that prepares sperm for the acrosome reaction) and the acrosome reaction (an exocytotic event that allows sperm-egg fusion). The use of fluorescent dyes to track intracellular fluctuations of this ion is of remarkable importance due to their ease of application, sensitivity, and versatility of detection. Using one single dye-loading protocol we utilize four different fluorometric techniques to monitor sperm Ca2+ dynamics. Each technique provides distinct information that enables spatial and/or temporal resolution, generating data both at single cell and cell population levels.
Cellular Biology, Issue 75, Medicine, Molecular Biology, Genetics, Biophysics, Anatomy, Physiology, Spermatozoa, Ion Channels, Cell Physiological Processes, Calcium Signaling, Reproductive Physiological Processes, fluorometry, Flow cytometry, stopped flow fluorometry, single-cell imaging, human sperm, sperm physiology, intracellular Ca2+, Ca2+ signaling, Ca2+ imaging, fluorescent dyes, imaging
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.