JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks.
PLoS ONE
PUBLISHED: 01-07-2013
It has been discovered recently in experiments that the dendritic integration of excitatory glutamatergic inputs and inhibitory GABAergic inputs in hippocampus CA1 pyramidal neurons obeys a simple arithmetic rule as V(S)(Exp) ? V(E)(Exp) + V(I)(Exp) + kV(E)(Exp) V(I)(Exp), where V(S)(Exp), V(E)(Exp) and V(I)(Exp) are the respective voltage values of the summed somatic potential, the excitatory postsynaptic potential (EPSP) and the inhibitory postsynaptic potential measured at the time when the EPSP reaches its peak value. Moreover, the shunting coefficient k in this rule only depends on the spatial location but not the amplitude of the excitatory or inhibitory input on the dendrite. In this work, we address the theoretical issue of how much the above dendritic integration rule can be accounted for using subthreshold membrane potential dynamics in the soma as characterized by the conductance-based integrate-and-fire (I&F) model. Then, we propose a simple I&F neuron model that incorporates the spatial dependence of the shunting coefficient k by a phenomenological parametrization. Our analytical and numerical results show that this dendritic-integration-rule-based I&F (DIF) model is able to capture many experimental observations and it also yields predictions that can be used to verify the validity of the DIF model experimentally. In addition, the DIF model incorporates the dendritic integration effects dynamically and is applicable to more general situations than those in experiments in which excitatory and inhibitory inputs occur simultaneously in time. Finally, we generalize the DIF neuronal model to incorporate multiple inputs and obtain a similar dendritic integration rule that is consistent with the results obtained by using a realistic neuronal model with multiple compartments. This generalized DIF model can potentially be used to study network dynamics that may involve effects arising from dendritic integrations.
ABSTRACT
One of the fundamental interests in neuroscience is to understand the integration of excitatory and inhibitory inputs along the very complex structure of the dendritic tree, which eventually leads to neuronal output of action potentials at the axon. The influence of diverse spatial and temporal parameters of specific synaptic input on neuronal output is currently under investigation, e.g. the distance-dependent attenuation of dendritic inputs, the location-dependent interaction of spatially segregated inputs, the influence of GABAergig inhibition on excitatory integration, linear and non-linear integration modes, and many more. With fast micro-iontophoresis of glutamate and GABA it is possible to precisely investigate the spatial and temporal integration of glutamatergic excitation and GABAergic inhibition. Critical technical requirements are either a triggered fluorescent lamp, light-emitting diode (LED), or a two-photon scanning microscope to visualize dendritic branches without introducing significant photo-damage of the tissue. Furthermore, it is very important to have a micro-iontophoresis amplifier that allows for fast capacitance compensation of high resistance pipettes. Another crucial point is that no transmitter is involuntarily released by the pipette during the experiment. Once established, this technique will give reliable and reproducible signals with a high neurotransmitter and location specificity. Compared to glutamate and GABA uncaging, fast iontophoresis allows using both transmitters at the same time but at very distant locations without limitation to the field of view. There are also advantages compared to focal electrical stimulation of axons: with micro-iontophoresis the location of the input site is definitely known and it is sure that only the neurotransmitter of interest is released. However it has to be considered that with micro-iontophoresis only the postsynapse is activated and presynaptic aspects of neurotransmitter release are not resolved. In this article we demonstrate how to set up micro-iontophoresis in brain slice experiments.
21 Related JoVE Articles!
Play Button
Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
Authors: Jin Y. Huang, Klaus M. Stiefel, Dario A. Protti.
Institutions: University of Sydney , University of Western Sydney, University of Sydney .
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
Neuroscience, Issue 75, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Neurons, Retinal Neurons, Retinal Ganglion Cells, Eye, Retina, Neurosciences, retina, ganglion cells, synaptic conductance, artificial conductance, tetrodotoxin (TTX), patch clamp, dynamic clamp, conductance clamp, electrophysiology, mouse, animal model
50400
Play Button
Patterned Photostimulation with Digital Micromirror Devices to Investigate Dendritic Integration Across Branch Points
Authors: Conrad W. Liang, Michael Mohammadi, M. Daniel Santos, Cha-Min Tang.
Institutions: University of Maryland School of Medicine.
Light is a versatile and precise means to control neuronal excitability. The recent introduction of light sensitive effectors such as channel-rhodopsin and caged neurotransmitters have led to interests in developing better means to control patterns of light in space and time that are useful for experimental neuroscience. One conventional strategy, employed in confocal and 2-photon microscopy, is to focus light to a diffraction limited spot and then scan that single spot sequentially over the region of interest. This approach becomes problematic if large areas have to be stimulated within a brief time window, a problem more applicable to photostimulation than for imaging. An alternate strategy is to project the complete spatial pattern on the target with the aid of a digital micromirror device (DMD). The DMD approach is appealing because the hardware components are relatively inexpensive and is supported by commercial interests. Because such a system is not available for upright microscopes, we will discuss the critical issues in the construction and operations of such a DMD system. Even though we will be primarily describing the construction of the system for UV photolysis, the modifications for building the much simpler visible light system for optogenetic experiments will also be provided. The UV photolysis system was used to carryout experiments to study a fundamental question in neuroscience, how are spatially distributed inputs integrated across distal dendritic branch points. The results suggest that integration can be non-linear across branch points and the supralinearity is largely mediated by NMDA receptors.
Bioengineering, Issue 49, DMD, photolysis, dendrite, photostimulation, DLP, optogenetics
2003
Play Button
Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia
Authors: Jared B. DeCoste, Gregory W. Peterson.
Institutions: Science Applications International Corporation (SAIC), Research Development Engineering Command.
Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials.
Chemistry, Issue 80, materials (general), gas absorption, low pressure chemistry, organometallic materials, Chemistry and Materials (General), Inorganic, Organic and Physical Chemistry, plasma enhanced chemical vapor deposition, fluorine chemistry, microporosity, metal-organic frameworks, hydrophobic, stability, breakthrough, ammonia, adsorption
51175
Play Button
Imaging Dendritic Spines of Rat Primary Hippocampal Neurons using Structured Illumination Microscopy
Authors: Marijn Schouten, Giulia M. R. De Luca, Diana K. Alatriste González, Babette E. de Jong, Wendy Timmermans, Hui Xiong, Harm Krugers, Erik M. M. Manders, Carlos P. Fitzsimons.
Institutions: University of Amsterdam, University of Amsterdam.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light's intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy's theoretical resolution limit of 200 nm. Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.
Neuroscience, Issue 87, Dendritic Spine, Microscopy, Confocal, Fluorescence, Neurosciences, hippocampus, primary neuron, super resolution microscopy, structured illumination microscopy (SIM), neuroscience, dendrite
51276
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
51433
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
51458
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
51706
Play Button
Paired Whole Cell Recordings in Organotypic Hippocampal Slices
Authors: Chantelle Fourie, Marianna Kiraly, Daniel V. Madison, Johanna M. Montgomery.
Institutions: University of Auckland, Stanford University.
Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.
Neuroscience, Issue 91, hippocampus, paired recording, whole cell recording, organotypic slice, synapse, synaptic transmission, synaptic plasticity
51958
Play Button
Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons
Authors: Christian Kleinhans, Karl W. Kafitz, Christine R. Rose.
Institutions: Heinrich Heine University Düsseldorf.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.
Neuroscience, Issue 92, Neurosciences, two-photon microscopy, patch-clamp, UV-flash photolysis, mouse, hippocampus, caged compounds, glutamate, brain slice, dendrite, sodium signals
52038
Play Button
Synthesis and Characterization of Functionalized Metal-organic Frameworks
Authors: Olga Karagiaridi, Wojciech Bury, Amy A. Sarjeant, Joseph T. Hupp, Omar K. Farha.
Institutions: Northwestern University, Warsaw University of Technology, King Abdulaziz University.
Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy.
Chemistry, Issue 91, Metal-organic frameworks, porous coordination polymers, supercritical CO2 activation, crystallography, solvothermal, sorption, solvent-assisted linker exchange
52094
Play Button
Subretinal Transplantation of MACS Purified Photoreceptor Precursor Cells into the Adult Mouse Retina
Authors: Dominic Eberle, Tiago Santos-Ferreira, Sandra Grahl, Marius Ader.
Institutions: Technische Universität Dresden.
Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to unsorted cell suspensions.
Medicine, Issue 84, Photoreceptor Cells, Vertebrate, Retinal Degeneration, Regeneration, retina, magnetic associated cell sorting (MACS), transplantation, regenerative therapy
50932
Play Button
A Rapid Protocol for Integrating Extrachromosomal Arrays With High Transmission Rate into the C. elegans Genome
Authors: Marie-Christine Mariol, Ludivine Walter, Stéphanie Bellemin, Kathrin Gieseler.
Institutions: Université Claude Bernard Lyon, CNRS UMR 5534.
Microinjecting DNA into the cytoplasm of the syncytial gonad of Caenorhabditis elegans is the main technique used to establish transgenic lines that exhibit partial and variable transmission rates of extrachromosomal arrays to the next generation. In addition, transgenic animals are mosaic and express the transgene in a variable number of cells. Extrachromosomal arrays can be integrated into the C. elegans genome using UV irradiation to establish nonmosaic transgenic strains with 100% transmission rate of the transgene. To that extent, F1 progenies of UV irradiated transgenic animals are screened for animals carrying a heterozygous integration of the transgene, which leads to a 75% Mendelian transmission rate to the F2 progeny. One of the challenges of this method is to distinguish between the percentage of transgene transmission in a population before (X% transgenic animals) and after integration (≥75% transgenic F2 animals). Thus, this method requires choosing a nonintegrated transgenic line with a percentage of transgenic animals that is significantly lower than the Mendelian segregation of 75%. Consequently, nonintegrated transgenic lines with an extrachromosomal array transmission rate to the next generation ≤60% are usually preferred for integration, and transgene integration in highly transmitting strains is difficult. Here we show that the efficiency of extrachromosomal arrays integration into the genome is increased when using highly transmitting transgenic lines (≥80%). The described protocol allows for easy selection of several independent lines with homozygous transgene integration into the genome after UV irradiation of transgenic worms exhibiting a high rate of extrachromosomal array transmission. Furthermore, this method is quite fast and low material consuming. The possibility of rapidly generating different lines that express a particular integrated transgene is of great interest for studies focusing on gene expression pattern and regulation, protein localization, and overexpression, as well as for the development of subcellular markers.
Basic Protocol, Issue 82, Caenorhabditis elegans, UV-mediated transgene integration, transgenic worms, irradiation, extrachromosomal, fluorescent
50773
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
Studying the Integration of Adult-born Neurons
Authors: Yan Gu, Stephen Janoschka, Shaoyu Ge.
Institutions: State University of New York at Stony Brook.
Neurogenesis occurs in adult mammalian brains in the sub-ventricular zone (SVZ) of the lateral ventricle and in the sub-granular zone (SGZ) of the hippocampal dentate gyrus throughout life. Previous reports have shown that adult hippocampal neurogenesis is associated with diverse brain disorders, including epilepsy, schizophrenia, depression and anxiety (1). Deciphering the process of normal and aberrant adult-born neuron integration may shed light on the etiology of these diseases and inform the development of new therapies. SGZ adult neurogenesis mirrors embryonic and post-natal neuronal development, including stages of fate specification, migration, synaptic integration, and maturation. However, full integration occurs over a prolonged, 6-week period. Initial synaptic input to adult-born SGZ dentate granule cells (DGCs) is GABAergic, followed by glutamatergic input at 14 days (2). The specific factors which regulate circuit formation of adult-born neurons in the dentate gyrus are currently unknown. Our laboratory uses a replication-deficient retroviral vector based on the Moloney murine leukemia virus to deliver fluorescent proteins and hypothesized regulatory genes to these proliferating cells. This viral technique provides high specificity and resolution for analysis of cell birth date, lineage, morphology, and synaptogenesis. A typical experiment often employs two or three viruses containing unique label, transgene, and promoter elements for single-cell analysis of a desired developmental process in vivo. The following protocol describes a method for analyzing functional newborn neuron integration using a single green (GFP) or red (dTomato) fluorescent protein retrovirus and patch-clamp electrophysiology.
Neuroscience, Issue 49, dentate gyrus, neurogenesis, newborn dentate granule cells, functional integration
2548
Play Button
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Authors: Taruna Ikrar, Nicholas D. Olivas, Yulin Shi, Xiangmin Xu.
Institutions: University of California, Irvine, University of California, Irvine.
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits.
Neuroscience, Issue 56, glutamate uncaging, whole cell recording, GFP, transgenic, interneurons
3109
Play Button
Voltage-sensitive Dye Recording from Axons, Dendrites and Dendritic Spines of Individual Neurons in Brain Slices
Authors: Marko Popovic, Xin Gao, Dejan Zecevic.
Institutions: Yale University School of Medicine .
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.
Neuroscience, Issue 69, Medicine, Physiology, Molecular Biology, Cellular Biology, voltage-sensitive dyes, brain, imaging, dendritic spines, axons, dendrites, neurons
4261
Play Button
Investigations on Alterations of Hippocampal Circuit Function Following Mild Traumatic Brain Injury
Authors: Colin J. Smith, Brian N. Johnson, Jaclynn A. Elkind, Jill M. See, Guoxiang Xiong, Akiva S. Cohen.
Institutions: Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania.
Traumatic Brain Injury (TBI) afflicts more than 1.7 million people in the United States each year and even mild TBI can lead to persistent neurological impairments 1. Two pervasive and disabling symptoms experienced by TBI survivors, memory deficits and a reduction in seizure threshold, are thought to be mediated by TBI-induced hippocampal dysfunction 2,3. In order to demonstrate how altered hippocampal circuit function adversely affects behavior after TBI in mice, we employ lateral fluid percussion injury, a commonly used animal model of TBI that recreates many features of human TBI including neuronal cell loss, gliosis, and ionic perturbation 4-6. Here we demonstrate a combinatorial method for investigating TBI-induced hippocampal dysfunction. Our approach incorporates multiple ex vivo physiological techniques together with animal behavior and biochemical analysis, in order to analyze post-TBI changes in the hippocampus. We begin with the experimental injury paradigm along with behavioral analysis to assess cognitive disability following TBI. Next, we feature three distinct ex vivo recording techniques: extracellular field potential recording, visualized whole-cell patch-clamping, and voltage sensitive dye recording. Finally, we demonstrate a method for regionally dissecting subregions of the hippocampus that can be useful for detailed analysis of neurochemical and metabolic alterations post-TBI. These methods have been used to examine the alterations in hippocampal circuitry following TBI and to probe the opposing changes in network circuit function that occur in the dentate gyrus and CA1 subregions of the hippocampus (see Figure 1). The ability to analyze the post-TBI changes in each subregion is essential to understanding the underlying mechanisms contributing to TBI-induced behavioral and cognitive deficits. The multi-faceted system outlined here allows investigators to push past characterization of phenomenology induced by a disease state (in this case TBI) and determine the mechanisms responsible for the observed pathology associated with TBI.
Neuroscience, Issue 69, Medicine, Anatomy, Physiology, hippocampus, traumatic brain injury, electrophysiology, patch clamp, voltage sensitive dye, extracellular recording, high-performance liquid chromatography, gas chromatography-mass spectrometry
4411
Play Button
Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices
Authors: Ulrike Pannasch, Jérémie Sibille, Nathalie Rouach.
Institutions: Collège de France, Paris Diderot University.
Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents.
Neuroscience, Issue 69, Physiology, Anatomy, Medicine, hippocampus preparation, acute brain slice, electrophysiology, patch-clamp, neurons, astrocytes, astroglial, neuroglial interactions, glutamate transporter current, potassium current, paired recordings, synaptic activity, synaptically-evoked responses
4418
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
50317
Play Button
A Computer-assisted Multi-electrode Patch-clamp System
Authors: Rodrigo Perin, Henry Markram.
Institutions: Ecole Polytechnique Federale de Lausanne.
The patch-clamp technique is today the most well-established method for recording electrical activity from individual neurons or their subcellular compartments. Nevertheless, achieving stable recordings, even from individual cells, remains a time-consuming procedure of considerable complexity. Automation of many steps in conjunction with efficient information display can greatly assist experimentalists in performing a larger number of recordings with greater reliability and in less time. In order to achieve large-scale recordings we concluded the most efficient approach is not to fully automatize the process but to simplify the experimental steps and reduce the chances of human error while efficiently incorporating the experimenter's experience and visual feedback. With these goals in mind we developed a computer-assisted system which centralizes all the controls necessary for a multi-electrode patch-clamp experiment in a single interface, a commercially available wireless gamepad, while displaying experiment related information and guidance cues on the computer screen. Here we describe the different components of the system which allowed us to reduce the time required for achieving the recording configuration and substantially increase the chances of successfully recording large numbers of neurons simultaneously.
Neuroscience, Issue 80, Patch-clamp, automatic positioning, whole-cell, neuronal recording, in vitro, multi-electrode
50630
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
52115
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.