JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.
PUBLISHED: 01-16-2013
Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP). The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.
Authors: Itamar Cohen, Yifat Geffen, Guy Ravid, Tommer Ravid.
Published: 11-06-2014
Protein degradation by the ubiquitin-proteasome system (UPS) is a major regulatory mechanism for protein homeostasis in all eukaryotes. The standard approach to determining intracellular protein degradation relies on biochemical assays for following the kinetics of protein decline. Such methods are often laborious and time consuming and therefore not amenable to experiments aimed at assessing multiple substrates and degradation conditions. As an alternative, cell growth-based assays have been developed, that are, in their conventional format, end-point assays that cannot quantitatively determine relative changes in protein levels. Here we describe a method that faithfully determines changes in protein degradation rates by coupling them to yeast cell-growth kinetics. The method is based on an established selection system where uracil auxotrophy of URA3-deleted yeast cells is rescued by an exogenously expressed reporter protein, comprised of a fusion between the essential URA3 gene and a degradation determinant (degron). The reporter protein is designed so that its synthesis rate is constant whilst its degradation rate is determined by the degron. As cell growth in uracil-deficient medium is proportional to the relative levels of Ura3, growth kinetics are entirely dependent on the reporter protein degradation. This method accurately measures changes in intracellular protein degradation kinetics. It was applied to: (a) Assessing the relative contribution of known ubiquitin-conjugating factors to proteolysis (b) E2 conjugating enzyme structure-function analyses (c) Identification and characterization of novel degrons. Application of the degron-URA3-based system transcends the protein degradation field, as it can also be adapted to monitoring changes of protein levels associated with functions of other cellular pathways.
13 Related JoVE Articles!
Play Button
Assaying Proteasomal Degradation in a Cell-free System in Plants
Authors: Elena García-Cano, Adi Zaltsman, Vitaly Citovsky.
Institutions: Stony Brook University, State University of New York.
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions. The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.
Biochemistry, Issue 85, Ubiquitin/proteasome system, 26S proteasome, protein degradation, proteasome inhibitor, Western blotting, plant genetic transformation
Play Button
Coupled Assays for Monitoring Protein Refolding in Saccharomyces cerevisiae
Authors: Jennifer L. Abrams, Kevin A. Morano.
Institutions: University of Texas Medical School.
Proteostasis, defined as the combined processes of protein folding/biogenesis, refolding/repair, and degradation, is a delicate cellular balance that must be maintained to avoid deleterious consequences 1. External or internal factors that disrupt this balance can lead to protein aggregation, toxicity and cell death. In humans this is a major contributing factor to the symptoms associated with neurodegenerative disorders such as Huntington's, Parkinson's, and Alzheimer's diseases 10. It is therefore essential that the proteins involved in maintenance of proteostasis be identified in order to develop treatments for these debilitating diseases. This article describes techniques for monitoring in vivo protein folding at near-real time resolution using the model protein firefly luciferase fused to green fluorescent protein (FFL-GFP). FFL-GFP is a unique model chimeric protein as the FFL moiety is extremely sensitive to stress-induced misfolding and aggregation, which inactivates the enzyme 12. Luciferase activity is monitored using an enzymatic assay, and the GFP moiety provides a method of visualizing soluble or aggregated FFL using automated microscopy. These coupled methods incorporate two parallel and technically independent approaches to analyze both refolding and functional reactivation of an enzyme after stress. Activity recovery can be directly correlated with kinetics of disaggregation and re-solubilization to better understand how protein quality control factors such as protein chaperones collaborate to perform these functions. In addition, gene deletions or mutations can be used to test contributions of specific proteins or protein subunits to this process. In this article we examine the contributions of the protein disaggregase Hsp104 13, known to partner with the Hsp40/70/nucleotide exchange factor (NEF) refolding system 5, to protein refolding to validate this approach.
Genetics, Issue 77, Molecular Biology, Microbiology, Cellular Biology, Biochemistry, Bioengineering, Biomedical Engineering, Proteins, Saccharomyces cerevisiae, Protein Folding, yeast, protein, chaperone, firefly luciferase, GFP, yeast, plasmid, assay, microscopy
Play Button
4D Imaging of Protein Aggregation in Live Cells
Authors: Rachel Spokoini, Maya Shamir, Alma Keness, Daniel Kaganovich.
Institutions: Hebrew University of Jerusalem .
One of the key tasks of any living cell is maintaining the proper folding of newly synthesized proteins in the face of ever-changing environmental conditions and an intracellular environment that is tightly packed, sticky, and hazardous to protein stability1. The ability to dynamically balance protein production, folding and degradation demands highly-specialized quality control machinery, whose absolute necessity is observed best when it malfunctions. Diseases such as ALS, Alzheimer's, Parkinson's, and certain forms of Cystic Fibrosis have a direct link to protein folding quality control components2, and therefore future therapeutic development requires a basic understanding of underlying processes. Our experimental challenge is to understand how cells integrate damage signals and mount responses that are tailored to diverse circumstances. The primary reason why protein misfolding represents an existential threat to the cell is the propensity of incorrectly folded proteins to aggregate, thus causing a global perturbation of the crowded and delicate intracellular folding environment1. The folding health, or "proteostasis," of the cellular proteome is maintained, even under the duress of aging, stress and oxidative damage, by the coordinated action of different mechanistic units in an elaborate quality control system3,4. A specialized machinery of molecular chaperones can bind non-native polypeptides and promote their folding into the native state1, target them for degradation by the ubiquitin-proteasome system5, or direct them to protective aggregation inclusions6-9. In eukaryotes, the cytosolic aggregation quality control load is partitioned between two compartments8-10: the juxtanuclear quality control compartment (JUNQ) and the insoluble protein deposit (IPOD) (Figure 1 - model). Proteins that are ubiquitinated by the protein folding quality control machinery are delivered to the JUNQ, where they are processed for degradation by the proteasome. Misfolded proteins that are not ubiquitinated are diverted to the IPOD, where they are actively aggregated in a protective compartment. Up until this point, the methodological paradigm of live-cell fluorescence microscopy has largely been to label proteins and track their locations in the cell at specific time-points and usually in two dimensions. As new technologies have begun to grant experimenters unprecedented access to the submicron scale in living cells, the dynamic architecture of the cytosol has come into view as a challenging new frontier for experimental characterization. We present a method for rapidly monitoring the 3D spatial distributions of multiple fluorescently labeled proteins in the yeast cytosol over time. 3D timelapse (4D imaging) is not merely a technical challenge; rather, it also facilitates a dramatic shift in the conceptual framework used to analyze cellular structure. We utilize a cytosolic folding sensor protein in live yeast to visualize distinct fates for misfolded proteins in cellular aggregation quality control, using rapid 4D fluorescent imaging. The temperature sensitive mutant of the Ubc9 protein10-12 (Ubc9ts) is extremely effective both as a sensor of cellular proteostasis, and a physiological model for tracking aggregation quality control. As with most ts proteins, Ubc9ts is fully folded and functional at permissive temperatures due to active cellular chaperones. Above 30 °C, or when the cell faces misfolding stress, Ubc9ts misfolds and follows the fate of a native globular protein that has been misfolded due to mutation, heat denaturation, or oxidative damage. By fusing it to GFP or other fluorophores, it can be tracked in 3D as it forms Stress Foci, or is directed to JUNQ or IPOD.
Cellular Biology, Issue 74, Molecular Biology, Genetics, Proteins, Aggregation quality control, protein folding quality control, GFP, JUNQ (juxtanuclear quality control compartment), IPOD (insoluble protein deposit), proteostasis sensor, 4D live cell imaging, live cells, laser, cell biology, protein folding, Ubc9ts, yeast, assay, cell, imaging
Play Button
Detection of Toxin Translocation into the Host Cytosol by Surface Plasmon Resonance
Authors: Michael Taylor, Tuhina Banerjee, Neyda VanBennekom, Ken Teter.
Institutions: University of Central Florida.
AB toxins consist of an enzymatic A subunit and a cell-binding B subunit1. These toxins are secreted into the extracellular milieu, but they act upon targets within the eukaryotic cytosol. Some AB toxins travel by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) before entering the cytosol2-4. In the ER, the catalytic A chain dissociates from the rest of the toxin and moves through a protein-conducting channel to reach its cytosolic target5. The translocated, cytosolic A chain is difficult to detect because toxin trafficking to the ER is an extremely inefficient process: most internalized toxin is routed to the lysosomes for degradation, so only a small fraction of surface-bound toxin reaches the Golgi apparatus and ER6-12. To monitor toxin translocation from the ER to the cytosol in cultured cells, we combined a subcellular fractionation protocol with the highly sensitive detection method of surface plasmon resonance (SPR)13-15. The plasma membrane of toxin-treated cells is selectively permeabilized with digitonin, allowing collection of a cytosolic fraction which is subsequently perfused over an SPR sensor coated with an anti-toxin A chain antibody. The antibody-coated sensor can capture and detect pg/mL quantities of cytosolic toxin. With this protocol, it is possible to follow the kinetics of toxin entry into the cytosol and to characterize inhibitory effects on the translocation event. The concentration of cytosolic toxin can also be calculated from a standard curve generated with known quantities of A chain standards that have been perfused over the sensor. Our method represents a rapid, sensitive, and quantitative detection system that does not require radiolabeling or other modifications to the target toxin.
Immunology, Issue 59, Surface plasmon resonance, AB toxin, translocation, endoplasmic reticulum, cell culture, cholera toxin, pertussis toxin
Play Button
Purification of Hsp104, a Protein Disaggregase
Authors: Elizabeth A. Sweeny, Morgan E. DeSantis, James Shorter.
Institutions: University of Pennsylvania.
Hsp104 is a hexameric AAA+ protein1 from yeast, which couples ATP hydrolysis to protein disaggregation2-10 (Fig. 1). This activity imparts two key selective advantages. First, renaturation of disordered aggregates by Hsp104 empowers yeast survival after various protein-misfolding stresses, including heat shock3,5,11,12. Second, remodeling of cross-beta amyloid fibrils by Hsp104 enables yeast to exploit myriad prions (infectious amyloids) as a reservoir of beneficial and heritable phenotypic variation13-22. Remarkably, Hsp104 directly remodels preamyloid oligomers and amyloid fibrils, including those comprised of the yeast prion proteins Sup35 and Ure223-30. This amyloid-remodeling functionality is a specialized facet of yeast Hsp104. The E. coli orthologue, ClpB, fails to remodel preamyloid oligomers or amyloid fibrils26,31,32. Hsp104 orthologues are found in all kingdoms of life except, perplexingly, animals. Indeed, whether animal cells possess any enzymatic system that couples protein disaggregation to renaturation (rather than degradation) remains unknown33-35. Thus, we and others have proposed that Hsp104 might be developed as a therapeutic agent for various neurodegenerative diseases connected with the misfolding of specific proteins into toxic preamyloid oligomers and amyloid fibrils4,7,23,36-38. There are no treatments that directly target the aggregated species associated with these diseases. Yet, Hsp104 dissolves toxic oligomers and amyloid fibrils composed of alpha-synuclein, which are connected with Parkinson's Disease23 as well as amyloid forms of PrP39. Importantly, Hsp104 reduces protein aggregation and ameliorates neurodegeneration in rodent models of Parkinson's Disease23 and Huntington's disease38. Ideally, to optimize therapy and minimize side effects, Hsp104 would be engineered and potentiated to selectively remodel specific aggregates central to the disease in question4,7. However, the limited structural and mechanistic understanding of how Hsp104 disaggregates such a diverse repertoire of aggregated structures and unrelated proteins frustrates these endeavors30,40-42. To understand the structure and mechanism of Hsp104, it is essential to study the pure protein and reconstitute its disaggregase activity with minimal components. Hsp104 is a 102kDa protein with a pI of ~5.3, which hexamerizes in the presence of ADP or ATP, or at high protein concentrations in the absence of nucleotide43-46. Here, we describe an optimized protocol for the purification of highly active, stable Hsp104 from E. coli. The use of E. coli allows simplified large-scale production and our method can be performed quickly and reliably for numerous Hsp104 variants. Our protocol increases Hsp104 purity and simplifies His6-tag removal compared to a previous purification method from E. coli47. Moreover, our protocol is more facile and convenient than two more recent protocols26,48.
Molecular Biology, Issue 55, Neuroscience, Hsp104, AAA+, disaggregase, heat shock, amyloid, prion
Play Button
Biochemical Reconstitution of Steroid Receptor•Hsp90 Protein Complexes and Reactivation of Ligand Binding
Authors: Patrick J. M. Murphy, Hannah R. Franklin, Nathan W. Furukawa.
Institutions: Seattle University, Seattle University, University of Washington.
Hsp90 is an essential and highly abundant molecular chaperone protein that has been found to regulate more than 150 eukaryotic signaling proteins, including transcription factors (e.g. nuclear receptors, p53) and protein kinases (e.g. Src, Raf, Akt kinase) involved in cell cycling, tumorigenesis, apoptosis, and multiple eukaryotic signaling pathways 1,2. Of these many 'client' proteins for hsp90, the assembly of steroid receptor•hsp90 complexes is the best defined (Figure 1). We present here an adaptable glucocorticoid receptor (GR) immunoprecipitation assay and in vitro GR•hsp90 reconstitution method that may be readily used to probe eukaryotic hsp90 functional activity, hsp90-mediated steroid receptor ligand binding, and molecular chaperone cofactor requirements. For example, this assay can be used to test hsp90 cofactor requirements and the effects of adding exogenous compounds to the reconstitution process. The GR has been a particularly useful system for studying hsp90 because the receptor must be bound to hsp90 to have an open ligand binding cleft that is accessible to steroid 3. Endogenous, unliganded GR is present in the cytoplasm of mammalian cells noncovalently bound to hsp90. As found in the endogenous GR•hsp90 heterocomplex, the GR ligand binding cleft is open and capable of binding steroid. If hsp90 dissociates from the GR or if its function is inhibited, the receptor is unable to bind steroid and requires reconstitution of the GR•hsp90 heterocomplex before steroid binding activity is restored 4 . GR can be immunoprecipitated from cell cytosol using a monoclonal antibody, and proteins such as hsp90 complexed to the GR can be assayed by western blot. Steroid binding activity of the immunoprecipitated GR can be determined by incubating the immunopellet with [3H]steroid. Previous experiments have shown hsp90-mediated opening of the GR ligand binding cleft requires hsp70, a second molecular chaperone also essential for eukaryotic cell viability. Biochemical activity of hsp90 and hsp70 are catalyzed by co-chaperone proteins Hop, hsp40, and p23 5. A multiprotein chaperone machinery containing hsp90, hsp70, Hop, and hsp40 are endogenously present in eukaryotic cell cytoplasm, and reticulocyte lysate provides a chaperone-rich protein source 6. In the method presented, GR is immunoadsorbed from cell cytosol and stripped of the endogenous hsp90/hsp70 chaperone machinery using mild salt conditions. The salt-stripped GR is then incubated with reticulocyte lysate, ATP, and K+, which results in the reconstitution of the GR•hsp90 heterocomplex and reactivation of steroid binding activity 7. This method can be utilized to test the effects of various chaperone cofactors, novel proteins, and experimental hsp90 or GR inhibitors in order to determine their functional significance on hsp90-mediated steroid binding 8-11.
Biochemistry, Issue 55, glucocorticoid receptor, hsp90, molecular chaperone protein, in vitro reconstitution, steroid binding, biochemistry, immunoadsorption, immunoprecipitation, Experion, western blot
Play Button
Monitoring of Ubiquitin-proteasome Activity in Living Cells Using a Degron (dgn)-destabilized Green Fluorescent Protein (GFP)-based Reporter Protein
Authors: Ruth Greussing, Hermann Unterluggauer, Rafal Koziel, Andrea B. Maier, Pidder Jansen-Dürr.
Institutions: Institute for Biomedical Aging Research, Leiden University Medical Center.
Proteasome is the main intracellular organelle involved in the proteolytic degradation of abnormal, misfolded, damaged or oxidized proteins 1, 2. Maintenance of proteasome activity was implicated in many key cellular processes, like cell's stress response 3, cell cycle regulation and cellular differentiation 4 or in immune system response 5. The dysfunction of the ubiquitin-proteasome system has been related to the development of tumors and neurodegenerative diseases 4, 6. Additionally, a decrease in proteasome activity was found as a feature of cellular senescence and organismal aging 7, 8, 9, 10. Here, we present a method to measure ubiquitin-proteasome activity in living cells using a GFP-dgn fusion protein. To be able to monitor ubiquitin-proteasome activity in living primary cells, complementary DNA constructs coding for a green fluorescent protein (GFP)–dgn fusion protein (GFP–dgn, unstable) and a variant carrying a frameshift mutation (GFP–dgnFS, stable 11) are inserted in lentiviral expression vectors. We prefer this technique over traditional transfection techniques because it guarantees a very high transfection efficiency independent of the cell type or the age of the donor. The difference between fluorescence displayed by the GFP–dgnFS (stable) protein and the destabilized protein (GFP-dgn) in the absence or presence of proteasome inhibitor can be used to estimate ubiquitin-proteasome activity in each particular cell strain. These differences can be monitored by epifluorescence microscopy or can be measured by flow cytometry.
Cellular Biology, Issue 69, Molecular Biology, Medicine, Biomedical Engineering, Virology, proteasome activity, lentiviral particles, GFP-dgn, GFP-dgnFS, GFP, human diploid fibroblasts, flow cytometry, plasmid, vector
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
Isolation of mRNAs Associated with Yeast Mitochondria to Study Mechanisms of Localized Translation
Authors: Chen Lesnik, Yoav Arava.
Institutions: Technion - Israel Institute of Technology.
Most of mitochondrial proteins are encoded in the nucleus and need to be imported into the organelle. Import may occur while the protein is synthesized near the mitochondria. Support for this possibility is derived from recent studies, in which many mRNAs encoding mitochondrial proteins were shown to be localized to the mitochondria vicinity. Together with earlier demonstrations of ribosomes’ association with the outer membrane, these results suggest a localized translation process. Such localized translation may improve import efficiency, provide unique regulation sites and minimize cases of ectopic expression. Diverse methods have been used to characterize the factors and elements that mediate localized translation. Standard among these is subcellular fractionation by differential centrifugation. This protocol has the advantage of isolation of mRNAs, ribosomes and proteins in a single procedure. These can then be characterized by various molecular and biochemical methods. Furthermore, transcriptomics and proteomics methods can be applied to the resulting material, thereby allow genome-wide insights. The utilization of yeast as a model organism for such studies has the advantages of speed, costs and simplicity. Furthermore, the advanced genetic tools and available deletion strains facilitate verification of candidate factors.
Biochemistry, Issue 85, mitochondria, mRNA localization, Yeast, S. cerevisiae, microarray, localized translation, biochemical fractionation
Play Button
Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells
Authors: Edward Avezov, Efrat Ron, Yana Izenshtein, Yosef Adan, Gerardo Z. Lederkremer.
Institutions: Tel Aviv University.
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.
Cellular Biology, Issue 38, N-linked oligosaccharide, mannose-labeling, endoplasmic reticulum associated degradation, calnexin, glycosylation, mannosidase
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
Detection of Protein Ubiquitination
Authors: Yeun Su Choo, Zhuohua Zhang.
Institutions: The Sanford Burnham Institute for Medical Research.
Ubiquitination, the covalent attachment of the polypeptide ubiquitin to target proteins, is a key posttranslational modification carried out by a set of three enzymes. They include ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3. Unlike to E1 and E2, E3 ubiquitin ligases display substrate specificity. On the other hand, numerous deubiquitylating enzymes have roles in processing polyubiquitinated proteins. Ubiquitination can result in change of protein stability, cellular localization, and biological activity. Mutations of genes involved in the ubiquitination/deubiquitination pathway or altered ubiquitin system function are associated with many different human diseases such as various types of cancer, neurodegeneration, and metabolic disorders. The detection of altered or normal ubiquitination of target proteins may provide a better understanding on the pathogenesis of these diseases.  Here, we describe protocols to detect protein ubiquitination in cultured cells in vivo and test tubes in vitro. These protocols are also useful to detect other ubiquitin-like small molecule modification such as sumolyation and neddylation.
Cell Biology, Biochemistry, Issue 30, ubiquitination, cultured cell, in vitro system, immunoprecipitation, immunoblotting, ubiquitin, posttranslational modification
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.