JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The earliest fleshy cone of Ephedra from the early cretaceous Yixian Formation of northeast China.
PUBLISHED: 01-14-2013
Bracts of female cones of extant gymnosperm Ephedra (Joint fir) are either colorful and fleshy (section Ephedra), or dry-winged and membranous (section Alatae), or dry and coriaceous (section Asarca), which have played a crucial role in long-distance seed dispersal that is responsible for a wide distribution of the genus in semiarid and arid areas of Eurasia, North Africa, North America, and South America. Recent molecular systematic studies on Ephedra have suggested that the fleshy bracts in character evolution may be plesiomorphic relative to the dry, membranous and coriaceous bracts. However, little is known about when the fleshy bracts of Ephedra have made their debut in the geological past. Herein, we describe a novel, fleshy bract-bearing female cone macrofossil from the Early Cretaceous (ca. 120-125 Ma) Yixian Formation in Liaoning, northeastern China. This cone bears three ellipsoid seeds subtended by only one whorl of fleshy bracts. Each seed has a thin outer envelope and an inner integument that extends upward and passes through the opening of the outer envelope, forming a thin and straight micropylar tube. Such a syndrome shows the closest similarity to an extant triovulate species Ephedra intermedia in the section Ephedra, but the latter bears a whorl of terminal fertile bracts and more than one whorl of inferior sterile bracts, and a thick outer envelope. Hence, we establish a new fossil species Ephedra carnosa. Our discovery provides the first direct macrofossil evidence for the previous molecular systematics of Ephedra, implying that the origin of fleshy bracts in Ephedra should not have been later than that of the membranous and coriaceous bracts by at least the Early Cretaceous.
Authors: Amanda R. Duselis, Paul B. Vrana.
Published: 04-28-2007
Rodents of the genus Peromyscus (deer mice) are the most prevalent native North American mammals. Peromyscus species are used in a wide range of research including toxicology, epidemiology, ecology, behavioral, and genetic studies. Here they provide a useful model for demonstrations of artificial insemination. Methods similar to those displayed here have previously been used in several deer mouse studies, yet no detailed protocol has been published. Here we demonstrate the basic method of artificial insemination. This method entails extracting the testes from the rodent, then isolating the sperm from the epididymis and vas deferens. The mature sperm, now in a milk mixture, are placed in the female’s reproductive tract at the time of ovulation. Fertilization is counted as day 0 for timing of embryo development. Embryos can then be retrieved at the desired time-point and manipulated. Artificial insemination can be used in a variety of rodent species where exact embryo timing is crucial or hard to obtain. This technique is vital for species or strains (including most Peromyscus) which may not mate immediately and/or where mating is hard to assess. In addition, artificial insemination provides exact timing for embryo development either in mapping developmental progress and/or transgenic work. Reduced numbers of animals can be used since fertilization is guaranteed. This method has been vital to furthering the Peromyscus system, and will hopefully benefit others as well.
26 Related JoVE Articles!
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Dual-phase Cone-beam Computed Tomography to See, Reach, and Treat Hepatocellular Carcinoma during Drug-eluting Beads Transarterial Chemo-embolization
Authors: Vania Tacher, MingDe Lin, Nikhil Bhagat, Nadine Abi Jaoudeh, Alessandro Radaelli, Niels Noordhoek, Bart Carelsen, Bradford J. Wood, Jean-François Geschwind.
Institutions: The Johns Hopkins Hospital, Philips Research North America, National Institutes of Health, Philips Healthcare.
The advent of cone-beam computed tomography (CBCT) in the angiography suite has been revolutionary in interventional radiology. CBCT offers 3 dimensional (3D) diagnostic imaging in the interventional suite and can enhance minimally-invasive therapy beyond the limitations of 2D angiography alone. The role of CBCT has been recognized in transarterial chemo-embolization (TACE) treatment of hepatocellular carcinoma (HCC). The recent introduction of a CBCT technique: dual-phase CBCT (DP-CBCT) improves intra-arterial HCC treatment with drug-eluting beads (DEB-TACE). DP-CBCT can be used to localize liver tumors with the diagnostic accuracy of multi-phasic multidetector computed tomography (M-MDCT) and contrast enhanced magnetic resonance imaging (CE-MRI) (See the tumor), to guide intra-arterially guidewire and microcatheter to the desired location for selective therapy (Reach the tumor), and to evaluate treatment success during the procedure (Treat the tumor). The purpose of this manuscript is to illustrate how DP-CBCT is used in DEB-TACE to see, reach, and treat HCC.
Medicine, Issue 82, Carcinoma, Hepatocellular, Tomography, X-Ray Computed, Surgical Procedures, Minimally Invasive, Digestive System Diseases, Diagnosis, Therapeutics, Surgical Procedures, Operative, Equipment and Supplies, Transarterial chemo-embolization, Hepatocellular carcinoma, Dual-phase cone-beam computed tomography, 3D roadmap, Drug-Eluting Beads
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
Play Button
Preparation of Segmented Microtubules to Study Motions Driven by the Disassembling Microtubule Ends
Authors: Vladimir A. Volkov, Anatoly V. Zaytsev, Ekaterina L. Grishchuk.
Institutions: Russian Academy of Sciences, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia, University of Pennsylvania.
Microtubule depolymerization can provide force to transport different protein complexes and protein-coated beads in vitro. The underlying mechanisms are thought to play a vital role in the microtubule-dependent chromosome motions during cell division, but the relevant proteins and their exact roles are ill-defined. Thus, there is a growing need to develop assays with which to study such motility in vitro using purified components and defined biochemical milieu. Microtubules, however, are inherently unstable polymers; their switching between growth and shortening is stochastic and difficult to control. The protocols we describe here take advantage of the segmented microtubules that are made with the photoablatable stabilizing caps. Depolymerization of such segmented microtubules can be triggered with high temporal and spatial resolution, thereby assisting studies of motility at the disassembling microtubule ends. This technique can be used to carry out a quantitative analysis of the number of molecules in the fluorescently-labeled protein complexes, which move processively with dynamic microtubule ends. To optimize a signal-to-noise ratio in this and other quantitative fluorescent assays, coverslips should be treated to reduce nonspecific absorption of soluble fluorescently-labeled proteins. Detailed protocols are provided to take into account the unevenness of fluorescent illumination, and determine the intensity of a single fluorophore using equidistant Gaussian fit. Finally, we describe the use of segmented microtubules to study microtubule-dependent motions of the protein-coated microbeads, providing insights into the ability of different motor and nonmotor proteins to couple microtubule depolymerization to processive cargo motion.
Basic Protocol, Issue 85, microscopy flow chamber, single-molecule fluorescence, laser trap, microtubule-binding protein, microtubule-dependent motor, microtubule tip-tracking
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Averaging of Viral Envelope Glycoprotein Spikes from Electron Cryotomography Reconstructions using Jsubtomo
Authors: Juha T. Huiskonen, Marie-Laure Parsy, Sai Li, David Bitto, Max Renner, Thomas A. Bowden.
Institutions: University of Oxford.
Enveloped viruses utilize membrane glycoproteins on their surface to mediate entry into host cells. Three-dimensional structural analysis of these glycoprotein ‘spikes’ is often technically challenging but important for understanding viral pathogenesis and in drug design. Here, a protocol is presented for viral spike structure determination through computational averaging of electron cryo-tomography data. Electron cryo-tomography is a technique in electron microscopy used to derive three-dimensional tomographic volume reconstructions, or tomograms, of pleomorphic biological specimens such as membrane viruses in a near-native, frozen-hydrated state. These tomograms reveal structures of interest in three dimensions, albeit at low resolution. Computational averaging of sub-volumes, or sub-tomograms, is necessary to obtain higher resolution detail of repeating structural motifs, such as viral glycoprotein spikes. A detailed computational approach for aligning and averaging sub-tomograms using the Jsubtomo software package is outlined. This approach enables visualization of the structure of viral glycoprotein spikes to a resolution in the range of 20-40 Å and study of the study of higher order spike-to-spike interactions on the virion membrane. Typical results are presented for Bunyamwera virus, an enveloped virus from the family Bunyaviridae. This family is a structurally diverse group of pathogens posing a threat to human and animal health.
Immunology, Issue 92, electron cryo-microscopy, cryo-electron microscopy, electron cryo-tomography, cryo-electron tomography, glycoprotein spike, enveloped virus, membrane virus, structure, subtomogram, averaging
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Isolation and Culture of Dissociated Sensory Neurons From Chick Embryos
Authors: Sarah Powell, Amrit Vinod, Michele L. Lemons.
Institutions: Assumption College.
Neurons are multifaceted cells that carry information essential for a variety of functions including sensation, motor movement, learning, and memory. Studying neurons in vivo can be challenging due to their complexity, their varied and dynamic environments, and technical limitations. For these reasons, studying neurons in vitro can prove beneficial to unravel the complex mysteries of neurons. The well-defined nature of cell culture models provides detailed control over environmental conditions and variables. Here we describe how to isolate, dissociate, and culture primary neurons from chick embryos. This technique is rapid, inexpensive, and generates robustly growing sensory neurons. The procedure consistently produces cultures that are highly enriched for neurons and has very few non-neuronal cells (less than 5%). Primary neurons do not adhere well to untreated glass or tissue culture plastic, therefore detailed procedures to create two distinct, well-defined laminin-containing substrata for neuronal plating are described. Cultured neurons are highly amenable to multiple cellular and molecular techniques, including co-immunoprecipitation, live cell imagining, RNAi, and immunocytochemistry. Procedures for double immunocytochemistry on these cultured neurons have been optimized and described here.
Neuroscience, Issue 91, dorsal root gangia, DRG, chicken, in vitro, avian, laminin-1, embryonic, primary
Play Button
Mechanical Expansion of Steel Tubing as a Solution to Leaky Wellbores
Authors: Mileva Radonjic, Darko Kupresan.
Institutions: Louisiana State University.
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1. The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments.
Physics, Issue 93, Leaky wellbores, Wellbore cement, Microannular gas flow, Sustained casing pressure, Expandable casing technology.
Play Button
Methods for Performing Crosses in Setaria viridis, a New Model System for the Grasses
Authors: Hui Jiang, Hugues Barbier, Thomas Brutnell.
Institutions: Donald Danforth Plant Science Center, Boyce Thompson Institute.
Setaria viridis is an emerging model system for C4 grasses. It is closely related to the bioenergy feed stock switchgrass and the grain crop foxtail millet. Recently, the 510 Mb genome of foxtail millet, S. italica, has been sequenced 1,2 and a 25x coverage genome sequence of the weedy relative S. viridis is in progress. S. viridis has a number of characteristics that make it a potentially excellent model genetic system including a rapid generation time, small stature, simple growth requirements, prolific seed production 3 and developed systems for both transient and stable transformation 4. However, the genetics of S. viridis is largely unexplored, in part, due to the lack of detailed methods for performing crosses. To date, no standard protocol has been adopted that will permit rapid production of seeds from controlled crosses. The protocol presented here is optimized for performing genetic crosses in S. viridis, accession A10.1. We have employed a simple heat treatment with warm water for emasculation after pruning the panicle to retain 20-30 florets and labeling of flowers to eliminate seeds resulting from newly developed flowers after emasculation. After testing a series of heat treatments at permissive temperatures and varying the duration of dipping, we have established an optimum temperature and time range of 48 °C for 3-6 min. By using this method, a minimum of 15 crosses can be performed by a single worker per day and an average of 3-5 outcross progeny per panicle can be recovered. Therefore, an average of 45-75 outcross progeny can be produced by one person in a single day. Broad implementation of this technique will facilitate the development of recombinant inbred line populations of S. viridis X S. viridis or S. viridis X S. italica, mapping mutations through bulk segregant analysis and creating higher order mutants for genetic analysis.
Environmental Sciences, Issue 80, Hybridization, Genetics, plants, Setaria viridis, crosses, emasculation, flowering, seed propagation, seed dormancy
Play Button
Labeling of Single Cells in the Central Nervous System of Drosophila melanogaster
Authors: Christof Rickert, Thomas Kunz, Kerri-Lee Harris, Paul Whitington, Gerhard Technau.
Institutions: University of Mainz, University of Melbourne.
In this article we describe how to individually label neurons in the embryonic CNS of Drosophila melanogaster by juxtacellular injection of the lipophilic fluorescent membrane marker DiI. This method allows the visualization of neuronal cell morphology in great detail. It is possible to label any cell in the CNS: cell bodies of target neurons are visualized under DIC optics or by expression of a fluorescent genetic marker such as GFP. After labeling, the DiI can be transformed into a permanent brown stain by photoconversion to allow visualization of cell morphology with transmitted light and DIC optics. Alternatively, the DiI-labeled cells can be observed directly with confocal microscopy, enabling genetically introduced fluorescent reporter proteins to be colocalised. The technique can be used in any animal, irrespective of genotype, making it possible to analyze mutant phenotypes at single cell resolution.
Developmental Biology, Issue 73, Neuroscience, Neurobiology, Genetics, Cellular Biology, Molecular Biology, Anatomy, Drosophila, fruit fly, Neurosciences, Neuroanatomy, Life sciences, embryonic nervous system, central nervous system, neuronal morphology, single cell labeling, embryo, microscopy, animal model
Play Button
Dissection, Culture, and Analysis of Xenopus laevis Embryonic Retinal Tissue
Authors: Molly J. McDonough, Chelsea E. Allen, Ng-Kwet-Leok A. Ng-Sui-Hing, Brian A. Rabe, Brittany B. Lewis, Margaret S. Saha.
Institutions: College of William and Mary.
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation1-16. The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates 12,14-18. While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells 7,19-23. For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues 8,19-22,24-33. Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level 5,8,21,24,27-30,33-39. Xenopus laevis, a classic model system for the study of early neural development 19,27,29,31-32,40-42, serves as a particularly suitable system for retinal primary cell culture 10,38,43-45. Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction 25,38,43. In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products 10,24,44-45. However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
Developmental Biology, Issue 70, Neuroscience, Cellular Biology, Surgery, Anatomy, Physiology, Ophthalmology, retina, primary cell culture, dissection, confocal microscopy, calcium imaging, fluorescent in situ hybridization, FISH, Xenopus laevis, animal model
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
The Gateway to the Brain: Dissecting the Primate Eye
Authors: Mark Burke, Shahin Zangenehpour, Joseph Bouskila, Denis Boire, Maurice Ptito.
Institutions: University of Montreal, University of Montreal, Universite du Quebec a Trois-Rivieres.
The visual system in humans is considered the gateway to the world and plays a principal role in the plethora of sensory, perceptual and cognitive processes. It is therefore not surprising that quality of vision is tied to quality of life . Despite widespread clinical and basic research surrounding the causes of visual disorders, many forms of visual impairments, such as retinitis pigmentosa and macular degeneration, lack effective treatments. Non-human primates have the closest general features of eye development to that of humans. Not only do they have a similar vascular anatomy, but amongst other mammals, primates have the unique characteristic of having a region in the temporal retina specialized for high visual acuity, the fovea1. Here we describe a general technique for dissecting the primate retina to provide tissue for retinal histology, immunohistochemistry, laser capture microdissection, as well as light and electron microscopy. With the extended use of the non-human primate as a translational model, our hope is that improved understanding of the retina will provide insights into effective approaches towards attenuating or reversing the negative impact of visual disorders on the quality of life of affected individuals.
Neuroscience, Issue 27, Non-human primate, eye, retina, dissection, retina ganglion cells, cornea
Play Button
Dissection of Organs from the Adult Zebrafish
Authors: Tripti Gupta, Mary C. Mullins.
Institutions: University of Pennsylvania-School of Medicine.
Over the last 20 years, the zebrafish has become a powerful model organism for understanding vertebrate development and disease. Although experimental analysis of the embryo and larva is extensive and the morphology has been well documented, descriptions of adult zebrafish anatomy and studies of development of the adult structures and organs, together with techniques for working with adults are lacking. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location during the larval to adult transition. Externally, the transparent larva develops its characteristic adult striped pigment pattern and paired pelvic fins, while internally, the organs undergo massive growth and remodeling. In addition, the bipotential gonad primordium develops into either testis or ovary. This protocol identifies many of the organs of the adult and demonstrates methods for dissection of the brain, gonads, gastrointestinal system, heart, and kidney of the adult zebrafish. The dissected organs can be used for in situ hybridization, immunohistochemistry, histology, RNA extraction, protein analysis, and other molecular techniques. This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems.
Developmental Biology, Issue 37, adult, zebrafish, organs, dissection, anatomy
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Mechanical Manipulation of Neurons to Control Axonal Development
Authors: Phillip Lamoureux, Steven Heidemann, Kyle E. Miller.
Institutions: Michigan State University, East Lansing.
Cell manipulations and extension of neuronal axons can be accomplished with calibrated glass micro-fibers capable of measuring and applying forces in the 10-1000 μdyne range1,2. Force measurements are obtained through observation of the Hookean bending of the glass needles, which are calibrated by a direct and empirical method3. Equipment requirements and procedures for fabricating, calibrating, treating, and using the needles on cells are fully described. The force regimes previously used and different cell types to which these techniques have been applied demonstrate the flexibility of the methodology and are given as examples for future investigation4-6. The technical advantages are the continuous 'visualization' of the forces produced by the manipulations and the ability to directly intervene in a variety of cellular events. These include direct stimulation and regulation of axonal growth and retraction7; as well as detachment and mechanical measurements on any type of cultured cell8.
Neuroscience, Issue 50, Axon, neuron, tension, force, growth cone
Play Button
Preparation of Living Isolated Vertebrate Photoreceptor Cells for Fluorescence Imaging
Authors: Nicholas P. Boyer, Chunhe Chen, Yiannis Koutalos.
Institutions: Medical University of South Carolina.
In the vertebrate retina, phototransduction, the conversion of light to an electrical signal, is carried out by the rod and cone photoreceptor cells1-4. Rod photoreceptors are responsible for vision in dim light, cones in bright light. Phototransduction takes place in the outer segment of the photoreceptor cell, a specialized compartment that contains a high concentration of visual pigment, the primary light detector. The visual pigment is composed of a chromophore, 11-cis retinal, attached to a protein, opsin. A photon absorbed by the visual pigment isomerizes the chromophore from 11-cis to all-trans. This photoisomerization brings about a conformational change in the visual pigment that initiates a cascade of reactions culminating in a change in membrane potential, and bringing about the transduction of the light stimulus to an electrical signal. The recovery of the cell from light stimulation involves the deactivation of the intermediates activated by light, and the reestablishment of the membrane potential. Ca2+ modulates the activity of several of the enzymes involved in phototransduction, and its concentration is reduced upon light stimulation. In this way, Ca2+ plays an important role in the recovery of the cell from light stimulation and its adaptation to background light. Another essential part of the recovery process is the regeneration of the visual pigment that has been destroyed during light-detection by the photoisomerization of its 11-cis chromophore to all-trans5-7. This regeneration begins with the release of all-trans retinal by the photoactivated pigment, leaving behind the apo-protein opsin. The released all-trans retinal is rapidly reduced in a reaction utilizing NADPH to all- trans retinol, and opsin combines with fresh 11-cis retinal brought into the outer segment to reform the visual pigment. All-trans retinol is then transferred out of the outer segment and into neighboring cells by the specialized carrier Interphotoreceptor Retinoid Binding Protein (IRBP). Fluorescence imaging of single photoreceptor cells can be used to study their physiology and cell biology. Ca2+-sensitive fluorescent dyes can be used to examine in detail the interplay between outer segment Ca2+ changes and response to light8-12 as well as the role of inner segment Ca2+ stores in Ca2+ homeostasis13,14. Fluorescent dyes can also be used for measuring Mg2+ concentration15, pH, and as tracers of aqueous and membrane compartments16. Finally, the intrinsic fluorescence of all-trans retinol (vitamin A) can be used to monitor the kinetics of its formation and removal in single photoreceptor cells17-19.
Neuroscience, Issue 52, retina, rods, cones, vision, fluorescence
Play Button
Vibratome Sectioning for Enhanced Preservation of the Cytoarchitecture of the Mammalian Organ of Corti
Authors: Katherine Shim.
Institutions: Medical College of Wisconsin .
The mammalian organ of Corti is a highly ordered cellular mosaic of mechanosensory hair and nonsensory supporting cells (reviewed in 1,2).Visualization of this cellular mosaic often requires that the organ of Corti is cross-sectioned. In particular, the nonsensory pillar and Deiters' cells, whose nuclei are located basally with respect to the hair cells, cannot be visualized without cross-sectioning the organ of Corti. However, the delicate cytoarchitecture of the mammalian organ of Corti, including the fine cytoplasmic processes of the pillar and Deiters' cells, is difficult to preserve by routine histological procedures such as paraffin and cryo-sectioning, which are compatible with standard immunohistochemical staining techniques. Here I describe a simple and robust procedure consisting of vibratome sectioning of the cochlea, immunohistochemical staining of these vibratome sections in whole mount, followed by confocal microscopy. This procedure has been used widely for immunhistochemical analysis of multiple organs, including the mouse limb bud, zebrafish gut, liver, pancreas, and heart (see 3-6 for selected examples). In addition, this procedure was sucessful for both imaging and quantitificaton of pillar cell number in mutant and control organs of Corti in both embryos and adult mice 7. This method, however, is currently not widely used to examine the mammalian organ of Corti. The potential for this procedure to both provide enhanced preservation of the fine cytoarchitecture of the adult organ of Corti and allow for quantification of various cell types is described.
Neuroscience, Issue 52, vibratome, confocal microscopy, immunofluorescence, organ of Corti, pillar cells
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
On-Chip Endothelial Inflammatory Phenotyping
Authors: J. Sherrod DeVerse, Keith A. Bailey, Greg A. Foster, Vaishali Mittal, Stuart M. Altman, Scott I. Simon, Anthony G. Passerini.
Institutions: University of California, Davis .
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual's level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.
Biomedical Engineering, Issue 65, Bioengineering, Immunology, Molecular Biology, Genetics, endothelial cell, monocyte arrest, microfluidics, shear stress, cytokine, atherosclerosis, inflammation
Play Button
Single-cell Suction Recordings from Mouse Cone Photoreceptors
Authors: Jin-Shan Wang, Vladimir J Kefalov.
Institutions: Washington University in St. Louis, School of Medicine.
Rod and cone photoreceptors in the retina are responsible for light detection. In darkness, cyclic nucleotide-gated (CNG) channels in the outer segment are open and allow cations to flow steadily inwards across the membrane, depolarizing the cell. Light exposure triggers the closure of the CNG channels, blocks the inward cation current flow, and thus results in cell hyperpolarization. Based on the polarity of photoreceptors, a suction recording method was developed in 1970s that, unlike the classic patch-clamp technique, does not require penetrating the plasma membrane 1. Drawing the outer segment into a tightly-fitting glass pipette filled with extracellular solution allows recording the current changes in individual cells upon test-flash exposure. However, this well-established "outer-segment-in (OS-in)" suction recording is not suitable for mouse cone recordings, because of the low percentage of cones in the mouse retina (3%) and the difficulties in identifying the cone outer segments. Recently, an inner-segment-in (IS-in) recording configuration was developed to draw the inner segment/nuclear region of the photoreceptor into the recording pipette 2,3. In this video, we will show how to record from individual mouse cone photoresponses using single-cell suction electrode.
Cellular Biology, Issue 35, mouse, cone photoreceptor, electrophysiology, suction-recording, CNG channels, retina, murine, IS-in
Play Button
Thin Sectioning of Slice Preparations for Immunohistochemistry
Authors: Jae-Joon Park, Miles G. Cunningham.
Institutions: Yonsei University College of Medicine, Severance Hospital, Harvard Medical School.
Many investigations in neuroscience, as well as other disciplines, involve studying small, yet macroscopic pieces or sections of tissue that have been preserved, freshly removed, or excised but kept viable, as in slice preparations of brain tissue. Subsequent microscopic studies of this material can be challenging, as the tissue samples may be difficult to handle. Demonstrated here is a method for obtaining thin cryostat sections of tissue with a thickness that may range from 0.2-5.0 mm. We routinely cut 400 micron thick Vibratome brain slices serially into 5-10 micron coronal cryostat sections. The slices are typically first used for electrophysiology experiments and then require microscopic analysis of the cytoarchitecture of the region from which the recordings were observed. We have constructed a simple device that allows controlled and reproducible preparation and positioning of the tissue slice. This device consists of a cylinder 5 cm in length with a diameter of 1.2 cm, which serves as a freezing stage for the slice. A ring snugly slides over the cylinder providing walls around the slice allowing the tissue to be immersed in freezing compound (e.g., OCT). This is then quickly frozen with crushed dry ice and the resulting wafer can be position easily for cryostat sectioning. Thin sections can be thaw-mounted onto coated slides to allow further studies to be performed, such as various staining methods, in situ hybridization, or immunohistochemistry, as demonstrated here.
Neuroscience, Issue 3, dissection, slide, immunohistochemistry, staining
Play Button
Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects
Authors: Gustavo R. Rodríguez, Jennifer B. Moyseenko, Matthew D. Robbins, Nancy Huarachi Morejón, David M. Francis, Esther van der Knaap.
Institutions: The Ohio State University.
Measuring fruit morphology and color traits of vegetable and fruit crops in an objective and reproducible way is important for detailed phenotypic analyses of these traits. Tomato Analyzer (TA) is a software program that measures 37 attributes related to two-dimensional shape in a semi-automatic and reproducible manner1,2. Many of these attributes, such as angles at the distal and proximal ends of the fruit and areas of indentation, are difficult to quantify manually. The attributes are organized in ten categories within the software: Basic Measurement, Fruit Shape Index, Blockiness, Homogeneity, Proximal Fruit End Shape, Distal Fruit End Shape, Asymmetry, Internal Eccentricity, Latitudinal Section and Morphometrics. The last category requires neither prior knowledge nor predetermined notions of the shape attributes, so morphometric analysis offers an unbiased option that may be better adapted to high-throughput analyses than attribute analysis. TA also offers the Color Test application that was designed to collect color measurements from scanned images and allow scanning devices to be calibrated using color standards3. TA provides several options to export and analyze shape attribute, morphometric, and color data. The data may be exported to an excel file in batch mode (more than 100 images at one time) or exported as individual images. The user can choose between output that displays the average for each attribute for the objects in each image (including standard deviation), or an output that displays the attribute values for each object on the image. TA has been a valuable and effective tool for indentifying and confirming tomato fruit shape Quantitative Trait Loci (QTL), as well as performing in-depth analyses of the effect of key fruit shape genes on plant morphology. Also, TA can be used to objectively classify fruit into various shape categories. Lastly, fruit shape and color traits in other plant species as well as other plant organs such as leaves and seeds can be evaluated with TA.
Plant Biology, Issue 37, morphology, color, image processing, quantitative trait loci, software
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.