JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Revision of MELD to include serum albumin improves prediction of mortality on the liver transplant waiting list.
PLoS ONE
PUBLISHED: 01-18-2013
Allocation of donor livers for transplantation in most regions is based on the Model for End-Stage Liver Disease (MELD) or MELD-sodium (MELDNa). Our objective was to assess revisions to MELD and MELDNa that include serum albumin for predicting waiting list mortality.
Authors: Jan M. Knaak, Vinzent N. Spetzler, Nicolas Goldaracena, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Published: 08-13-2014
ABSTRACT
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation. These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past. In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved. This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.
22 Related JoVE Articles!
Play Button
Isolation of Human Hepatocytes by a Two-step Collagenase Perfusion Procedure
Authors: Serene M.L. Lee, Celine Schelcher, Maresa Demmel, Maria Hauner, Wolfgang E. Thasler.
Institutions: Grosshadern Hospital, Munich, Grosshadern Hospital, Munich, Hepacult LLC, Regensburg, Grosshadern Hospital, Munich.
The liver, an organ with an exceptional regeneration capacity, carries out a wide range of functions, such as detoxification, metabolism and homeostasis. As such, hepatocytes are an important model for a large variety of research questions. In particular, the use of human hepatocytes is especially important in the fields of pharmacokinetics, toxicology, liver regeneration and translational research. Thus, this method presents a modified version of a two-step collagenase perfusion procedure to isolate hepatocytes as described by Seglen 1. Previously, hepatocytes have been isolated by mechanical methods. However, enzymatic methods have been shown to be superior as hepatocytes retain their structural integrity and function after isolation. This method presented here adapts the method designed previously for rat livers to human liver pieces and results in a large yield of hepatocytes with a viability of 77±10%. The main difference in this procedure is the process of cannulization of the blood vessels. Further, the method described here can also be applied to livers from other species with comparable liver or blood vessel sizes.
Medicine, Issue 79, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Surgery, Life Sciences (General), Human hepatocyte isolation, human hepatocyte, collagenase, perfusion, collagenase perfusion, hepatocyte, liver, human, cell, isolation, clinical applications, clinical techniques
50615
Play Button
Heterotopic Heart Transplantation in Mice
Authors: Fengchun Liu, Sang Mo Kang.
Institutions: University of California, San Francisco - UCSF.
The mouse heterotopic heart transplantation has been used widely since it was introduced by Drs. Corry and Russell in 1973. It is particularly valuable for studying rejection and immune response now that newer transgenic and gene knockout mice are available, and a large number of immunologic reagents have been developed. The heart transplant model is less stringent than the skin transplant models, although technically more challenging. We have developed a modified technique and have completed over 1000 successful cases of heterotopic heart transplantation in mice. When making anastomosis of the ascending aorta and abdominal aorta, two stay sutures are placed at the proximal and distal apexes of recipient abdominal aorta with the donor s ascending aorta, then using 11-0 suture for anastomosis on both side of aorta with continuing sutures. The stay sutures make the anastomosis easier and 11-0 is an ideal suture size to avoid bleeding and thrombosis. When making anastomosis of pulmonary artery and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s pulmonary artery. The left wall of the inferior vena cava and donor s pulmonary artery is closed with continuing sutures in the inside of the inferior vena cava after, one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s pulmonary artery are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Developmental Biology, Issue 6, Microsurgical Techniques, Heart Transplant, Allograft Rejection Model
238
Play Button
Manufacturing Devices and Instruments for Easier Rat Liver Transplantation
Authors: Graziano Oldani, Stephanie Lacotte, Lorenzo Orci, Philippe Morel, Gilles Mentha, Christian Toso.
Institutions: University of Geneva Hospitals, University of Pavia , University of Geneva, University of Geneva Hospitals.
Orthotopic rat liver transplantation is a popular model, which has been shown in a recent JoVE paper with the use of the "quick-linker" device. This technique allows for easier venous cuff-anatomoses after a reasonable learning curve. The device is composed of two handles, which are carved out from scalpel blades, one approximator, which is obtained by modifying Kocher's forceps, and cuffs designed from fine-bore polyethylene tubing. The whole process can be performed at a low-cost using common laboratory material. The present report provides a step-by-step protocol for the design of the required pieces and includes stencils.
Medicine, Issue 75, Biomedical Engineering, Bioengineering, Mechanical Engineering, Anatomy, Physiology, Surgery, Tissue Engineering, Liver Transplantation, Liver, transplantation, rat, quick-linker, orthotopic, graft, cuff, clinical techniques, animal model
50380
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Steps for the Autologous Ex vivo Perfused Porcine Liver-kidney Experiment
Authors: Wen Yuan Chung, Amar M. Eltweri, John Isherwood, Jonathan Haqq, Seok Ling Ong, Gianpiero Gravante, David M. Lloyd, Matthew S. Metcalfe, Ashley R. Dennison.
Institutions: University Hospitals of Leicester.
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
Medicine, Issue 82, Ex vivo, porcine, perfusion model, acid base balance, glucose, liver function, kidney function, cytokine response
50567
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
51115
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Transient Expression of Proteins by Hydrodynamic Gene Delivery in Mice
Authors: Daniella Kovacsics, Jayne Raper.
Institutions: Hunter College, CUNY.
Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).
Genetics, Issue 87, hydrodynamic gene delivery, hydrodynamics-based transfection, mouse, gene therapy, plasmid DNA, transient gene expression, tail vein injection
51481
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
50290
Play Button
Surgical Procedures for a Rat Model of Partial Orthotopic Liver Transplantation with Hepatic Arterial Reconstruction
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Institutions: RWTH-Aachen University, Kyoto University .
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Immunology, Surgery, liver transplantation, liver, hepatic, partial, orthotopic, split, rat, graft, transplantation, microsurgery, procedure, clinical, technique, artery, arterialization, arterialized, anastomosis, reperfusion, rat, animal model
4376
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Small Bowel Transplantation In Mice
Authors: Fengchun Liu, Sang-Mo Kang.
Institutions: University of California, San Francisco - UCSF.
Since 1990, the development of tacrolimus-based immunosuppression and improved surgical techniques, the increased array of potent immunosuppressive medications, infection prophylaxis, and suitable patient selection helped improve actuarial graft and patient survival rates for all types of intestine transplantation. Patients with irreversible intestinal failure and complications of parenteral nutrition should now be routinely considered for small intestine transplantation. However, Survival rates for small intestinal transplantation have been slow to improve compares increasingly favorably with renal, liver, heart and lung. The small bowel transplantation is still unsatisfactory compared with other organs. Further progress may depend on better understanding of immunology and physiology of the graft and can be greatly facilitated by animal models. A wider use of mouse small bowel transplantation model is needed in the study of immunology and physiology of the transplantation gut as well as efficient methods in diagnosing early rejection. However, this model is limited to use because the techniques involved is an extremely technically challenging. We have developed a modified technique. When making anastomosis of portal vein and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s portal vein. The left wall of the inferior vena cava and donor s portal vein is closed with continuing sutures in the inside of the inferior vena cava after, after one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s portal vein are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Issue 7, Immunology, Transplantation, Transplant Rejection, Small Bowel
258
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
2096
Play Button
Decellularization and Recellularization of Whole Livers
Authors: Basak E. Uygun, Gavrielle Price, Nima Saeidi, Maria-Louisa Izamis, Tim Berendsen, Martin Yarmush, Korkut Uygun.
Institutions: Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children.
The liver is a complex organ which requires constant perfusion for delivery of nutrients and oxygen and removal of waste in order to survive1. Efforts to recreate or mimic the liver microstructure with grounds up approach using tissue engineering and microfabrication techniques have not been successful so far due to this design challenge. In addition, synthetic biomaterials used to create scaffolds for liver tissue engineering applications have been limited in inducing tissue regeneration and repair in large part due to the lack of specific cell binding motifs that would induce the proper cell functions2. Decellularized native tissues such blood vessels3and skin4on the other hand have found many applications in tissue engineering, and have provided a practical solution to some of the challenges. The advantage of decellularized native matrix is that it retains, to an extent, the original composition, and the microstructure, hence enhancing cell attachment and reorganization5. In this work we describe the methods to perform perfusion-decellularization of the liver, such that an intact liver bioscaffold that retains the structure of major blood vessels is obtained. Further, we describe methods to recellularize these bioscaffolds with adult primary hepatocytes, creating a liver graft that is functional in vitro, and has the vessel access necessary for transplantation in vivo.
Bioengineering, Issue 48, Liver extracellular matrix, decellularization, recellularization, hepatocytes, bioreactor
2394
Play Button
Assessing Signaling Properties of Ectodermal Epithelia During Craniofacial Development
Authors: Diane Hu, Ralph S. Marcucio.
Institutions: University of California San Francisco.
The accessibility of avian embryos has helped experimental embryologists understand the fates of cells during development and the role of tissue interactions that regulate patterning and morphogenesis of vertebrates (e.g., 1, 2, 3, 4). Here, we illustrate a method that exploits this accessibility to test the signaling and patterning properties of ectodermal tissues during facial development. In these experiments, we create quail-chick 5 or mouse-chick 6 chimeras by transplanting the surface cephalic ectoderm that covers the upper jaw from quail or mouse onto either the same region or an ectopic region of chick embryos. The use of quail as donor tissue for transplantation into chicks was developed to take advantage of a nucleolar marker present in quail but not chick cells, thus allowing investigators to distinguish host and donor tissues 7. Similarly, a repetitive element is present in the mouse genome and is expressed ubiquitously, which allows us to distinguish host and donor tissues in mouse-chick chimeras 8. The use of mouse ectoderm as donor tissue will greatly extend our understanding of these tissue interactions, because this will allow us to test the signaling properties of ectoderm derived from various mutant embryos.
Developmental Biology, Issue 49, Quail-chick chimera, Ectoderm transplant, FEZ, Mouse-chick chimera
2557
Play Button
Seven Steps to Stellate Cells
Authors: Patrick Maschmeyer, Melanie Flach, Florian Winau.
Institutions: Harvard Medical School.
Hepatic stellate cells are liver-resident cells of star-like morphology and are located in the space of Disse between liver sinusoidal endothelial cells and hepatocytes1,2. Stellate cells are derived from bone marrow precursors and store up to 80% of the total body vitamin A1, 2. Upon activation, stellate cells differentiate into myofibroblasts to produce extracellular matrix, thus contributing to liver fibrosis3. Based on their ability to contract, myofibroblastic stellate cells can regulate the vascular tone associated with portal hypertension4. Recently, we demonstrated that hepatic stellate cells are potent antigen presenting cells and can activate NKT cells as well as conventional T lymphocytes5. Here we present a method for the efficient preparation of hepatic stellate cells from mouse liver. Due to their perisinusoidal localization, the isolation of hepatic stellate cells is a multi-step process. In order to render stellate cells accessible to isolation from the space of Disse, mouse livers are perfused in situ with the digestive enzymes Pronase E and Collagenase P. Following perfusion, the liver tissue is subjected to additional enzymatic treatment with Pronase E and Collagenase P in vitro. Subsequently, the method takes advantage of the massive amount of vitamin A-storing lipid droplets in hepatic stellate cells. This feature allows the separation of stellate cells from other hepatic cell types by centrifugation on an 8% Nycodenz gradient. The protocol described here yields a highly pure and homogenous population of stellate cells. Purity of preparations can be assessed by staining for the marker molecule glial fibrillary acidic protein (GFAP), prior to analysis by fluorescence microscopy or flow cytometry. Further, light microscopy reveals the unique appearance of star-shaped hepatic stellate cells that harbor high amounts of lipid droplets. Taken together, we present a detailed protocol for the efficient isolation of hepatic stellate cells, including representative images of their morphological appearance and GFAP expression that help to define the stellate cell entity.
Immunology, Issue 51, Hepatic Stellate Cell, Ito Cell, Liver Immunology, Retinoic Acid, Cell Isolation
2710
Play Button
Isolation of CD133+ Liver Stem Cells for Clonal Expansion
Authors: C. Bart Rountree, Wei Ding, Hein Dang, Colleen VanKirk, Gay M. Crooks.
Institutions: Pennsylvania State College of Medicine, Pennsylvania State College of Medicine, University of California Los Angeles, School of Medicine.
Liver stem cell, or oval cells, proliferate during chronic liver injury, and are proposed to differentiate into both hepatocytes and cholangiocytes. In addition, liver stem cells are hypothesized to be the precursors for a subset of liver cancer, Hepatocellular carcinoma. One of the primary challenges to stem cell work in any solid organ like the liver is the isolation of a rare population of cells for detailed analysis. For example, the vast majority of cells in the liver are hepatocytes (parenchymal fraction), which are significantly larger than non-parenchymal cells. By enriching the specific cellular compartments of the liver (i.e. parenchymal and non-parenchymal fractions), and selecting for CD45 negative cells, we are able to enrich the starting population of stem cells by over 600-fold.The proceduresdetailed in this report allow for a relatively rare population of cells from a solid organ to be sorted efficiently. This process can be utilized to isolateliver stem cells from normal murine liver as well as chronic liver injury models, which demonstrate increased liver stem cell proliferation. This method has clear advantages over standard immunohistochemistry of frozen or formalin fixed liver as functional studies using live cells can be performed after initial co-localization experiments. To accomplish the procedure outlined in this report, a working relationship with a research based flow-cytometry core is strongly encouraged as the details of FACS isolation are highly dependent on specialized instrumentation and a strong working knowledge of basic flow-cytometry procedures. The specific goal of this process is to isolate a population of liver stem cells that can be clonally expanded in vitro.
Developmental Biology, Issue 56, CD133, liver stem cell, oval cell, liver cancer stem cell, stem cell, cell isolation, non-parenchymal fraction of liver, flow cytometry
3183
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
3791
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
52029
Play Button
Laparoscopic Left Liver Sectoriectomy of Caroli's Disease Limited to Segment II and III
Authors: Luigi Boni, Gianlorenzo Dionigi, Francesca Rovera, Matteo Di Giuseppe.
Institutions: University of Insubria, University of Insubria.
Caroli's disease is defined as a abnormal dilatation of the intra-hepatica bile ducts: Its incidence is extremely low (1 in 1,000,000 population) and in most of the cases the whole liver is interested and liver transplantation is the treatment of choice. In case of dilatation limited to the left or right lobe, liver resection can be performed. For many year the standard approach for liver resection has been a formal laparotomy by means of a large incision of abdomen that is characterized by significant post-operatie morbidity. More recently, minimally invasive, laparoscopic approach has been proposed as possible surgical technique for liver resection both for benign and malignant diseases. The main benefits of the minimally invasive approach is represented by a significant reduction of the surgical trauma that allows a faster recovery a less post-operative complications. This video shows a case of Caroli s disease occured in a 58 years old male admitted at the gastroenterology department for sudden onset of abdominal pain associated with fever (>38C° ), nausea and shivering. Abdominal ultrasound demonstrated a significant dilatation of intra-hepatic left sited bile ducts with no evidences of gallbladder or common bile duct stones. Such findings were confirmed abdominal high resolution computer tomography. Laparoscopic left sectoriectomy was planned. Five trocars and 30° optic was used, exploration of the abdominal cavity showed no adhesions or evidences of other diseases. In order to control blood inflow to the liver, vascular clamp was placed on the hepatic pedicle (Pringle s manouvre), Parenchymal division is carried out with a combined use of 5 mm bipolar forceps and 5 mm ultrasonic dissector. A severely dilated left hepatic duct was isolated and divided using a 45mm endoscopic vascular stapler. Liver dissection was continued up to isolation of the main left portal branch that was then divided with a further cartridge of 45 mm vascular stapler. At his point the left liver remains attached only by the left hepatic vein: division of the triangular ligament was performed using monopolar hook and the hepatic vein isolated and the divided using vascular stapler. Haemostatis was refined by application of argon beam coagulation and no bleeding was revealed even after removal of the vascular clamp (total Pringle s time 27 minutes). Postoperative course was uneventful, minimal elevation of the liver function tests was recorded in post-operative day 1 but returned to normal at discharged on post-operative day 3.
Medicine, Issue 24, Laparoscopy, Liver resection, Caroli's disease, Left sectoriectomy
1118
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
634
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.