JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.
PUBLISHED: 01-18-2013
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue cells that are associated with their regenerative capabilities.
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Published: 11-14-2014
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
25 Related JoVE Articles!
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Isolation of Blood-vessel-derived Multipotent Precursors from Human Skeletal Muscle
Authors: William C.W. Chen, Arman Saparov, Mirko Corselli, Mihaela Crisan, Bo Zheng, Bruno Péault, Johnny Huard.
Institutions: University of Pittsburgh, University of Pittsburgh, Nazarbayev University, University of California at Los Angeles, Erasmus MC Stem Cell Institute, Oregon Health & Science University, Queen's Medical Research Institute and University of Edinburgh, University of California at Los Angeles, University of Pittsburgh.
Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes.
Cellular Biology, Issue 90, Blood Vessel; Pericyte; Adventitial Cell; Myogenic Endothelial Cell; Multipotent Precursor
Play Button
Preparation of DNA-crosslinked Polyacrylamide Hydrogels
Authors: Michelle L. Previtera, Noshir A. Langrana.
Institutions: JFK Medical Center, Rutgers University, Rutgers University.
Mechanobiology is an emerging scientific area that addresses the critical role of physical cues in directing cell morphology and function. For example, the effect of tissue elasticity on cell function is a major area of mechanobiology research because tissue stiffness modulates with disease, development, and injury. Static tissue-mimicking materials, or materials that cannot alter stiffness once cells are plated, are predominately used to investigate the effects of tissue stiffness on cell functions. While information gathered from static studies is valuable, these studies are not indicative of the dynamic nature of the cellular microenvironment in vivo. To better address the effects of dynamic stiffness on cell function, we developed a DNA-crosslinked polyacrylamide hydrogel system (DNA gels). Unlike other dynamic substrates, DNA gels have the ability to decrease or increase in stiffness after fabrication without stimuli. DNA gels consist of DNA crosslinks that are polymerized into a polyacrylamide backbone. Adding and removing crosslinks via delivery of single-stranded DNA allows temporal, spatial, and reversible control of gel elasticity. We have shown in previous reports that dynamic modulation of DNA gel elasticity influences fibroblast and neuron behavior. In this report and video, we provide a schematic that describes the DNA gel crosslinking mechanisms and step-by-step instructions on the preparation DNA gels.
Bioengineering, Issue 90, bioengineering (general), Elastic, viscoelastic, bis-acrylamide, substrate, stiffness, dynamic, static, neuron, fibroblast, compliance, ECM, mechanobiology, tunable
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging
Authors: Mikhail Paveliev, Mikhail Kislin, Dmitry Molotkov, Mikhail Yuryev, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki.
Although acute brain trauma often results from head damage in different accidents and affects a substantial fraction of the population, there is no effective treatment for it yet. Limitations of currently used animal models impede understanding of the pathology mechanism. Multiphoton microscopy allows studying cells and tissues within intact animal brains longitudinally under physiological and pathological conditions. Here, we describe two models of acute brain injury studied by means of two-photon imaging of brain cell behavior under posttraumatic conditions. A selected brain region is injured with a sharp needle to produce a trauma of a controlled width and depth in the brain parenchyma. Our method uses stereotaxic prick with a syringe needle, which can be combined with simultaneous drug application. We propose that this method can be used as an advanced tool to study cellular mechanisms of pathophysiological consequences of acute trauma in mammalian brain in vivo. In this video, we combine acute brain injury with two preparations: cranial window and skull thinning. We also discuss advantages and limitations of both preparations for multisession imaging of brain regeneration after trauma.
Medicine, Issue 86, Trauma, Nervous System, animal models, Brain trauma, in vivo multiphoton microscopy, dendrite, astrocyte, microglia, second harmonic generation.
Play Button
Isolation of Neonatal Extrahepatic Cholangiocytes
Authors: Sara Karjoo, Rebecca G. Wells.
Institutions: The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania.
The intra and extrahepatic bile ducts of the liver are developmentally distinct, and may be differentially affected by certain diseases. However, differences between intra and extrahepatic cholangiocytes, and between neonatal and adult cells, are not well understood. Methods for the isolation of cholangiocytes from intrahepatic bile ducts are well established1-4. Isolation of extrahepatic ductal cells, especially from the neonate, has not yet been described, although this would be of great benefit in understanding the differences between distinct cholangiocyte populations and in studying diseases such as biliary atresia that appear to target the extrahepatic ducts. Described here is an optimized technique to isolate both neonatal and adult mouse extrahepatic bile duct cells. This technique yields a pure cell population with minimal contamination from mesenchymal cells like fibroblasts. This method is based on the removal of the extrahepatic ducts and gallbladder, followed by meticulous dissection and scraping to remove fat and fibroblast layers. Structures are embedded in thick layers of collagen and cultured for approximately 3 weeks to allow outgrowth of cholangiocytes in monolayers, which can then be trypsinized and re plated for experimental use.
Medicine, Issue 88, Bile Ducts, Bile Ducts, Extrahepatic, Common Bile Duct, Bile Duct Diseases, Cell culture, bile duct, biliary atresia, Liver, gallbladder, fibrosis
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
Play Button
Manipulating the Murine Lacrimal Gland
Authors: Jennifer K. Finley, D'Juan Farmer, Elaine Emmerson, Noel Cruz Pacheco, Sarah M. Knox.
Institutions: University of California San Francisco.
The lacrimal gland (LG) secretes aqueous tears necessary for maintaining the structure and function of the cornea, a transparent tissue essential for vision. In the human a single LG resides in the orbit above the lateral end of each eye delivering tears to the ocular surface through 3 - 5 ducts. The mouse has three pairs of major ocular glands, the most studied of which is the exorbital lacrimal gland (LG) located anterior and ventral to the ear. Similar to other glandular organs, the LG develops through the process of epithelial branching morphogenesis in which a single epithelial bud within a condensed mesenchyme undergoes multiple rounds of bud and duct formation to form an intricate interconnected network of secretory acini and ducts. This elaborate process has been well documented in many other epithelial organs such as the pancreas and salivary gland. However, the LG has been much less explored and the mechanisms controlling morphogenesis are poorly understood. We suspect that this under-representation as a model system is a consequence of the difficulties associated with finding, dissecting and culturing the LG. Thus, here we describe dissection techniques for harvesting embryonic and post-natal LG and methods for ex vivo culture of the tissue.
Developmental Biology, Issue 93, lacrimal gland, ex vivo, branching morphogenesis, organ culture, embryogenesis
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Intracellular Recording, Sensory Field Mapping, and Culturing Identified Neurons in the Leech, Hirudo medicinalis
Authors: Josh Titlow, Zana R. Majeed, John G Nicholls, Robin L. Cooper.
Institutions: University of Kentucky, University of Salahaddin, Iraq, SISSA, Italy.
The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.
Neuroscience, Issue 81, leech, Neurobiology, culture, neurons, electrophysiology, synapse, neurophysiology, neuroethology, developmental biology, ganglion, central nervous system (CNS)
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
Methods for the Study of the Zebrafish Maxillary Barbel
Authors: Elizabeth E. LeClair, Jacek Topczewski.
Institutions: DePaul University, Northwestern University Feinberg School of Medicine.
Barbels are skin sensory appendages found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops two pairs of barbels- a short nasal pair and a longer maxillary pair. Barbel tissue contains cells of ectodermal, mesodermal and neural crest origin, including skin cells, glands, taste buds, melanocytes, circulatory vessels and sensory nerves. Unlike most adult tissue, the maxillary barbel is optically clear, allowing us to visualize the development and maintenance of these tissue types throughout the life cycle. This video shows early development of the maxillary barbel (beginning approximately one month post-fertilization) and demonstrates a surgical protocol to induce regeneration in the adult appendage (>3 months post-fertilization). Briefly, the left maxillary barbel of an anesthetized fish is elevated with sterile forceps just distal to the caudal edge of the maxilla. A fine, sterile spring scissors is positioned against the forceps to cut the barbel shaft at this level, establishing an anatomical landmark for the amputation plane. Regenerative growth can be measured with respect to this plane, and in comparison to the contralateral barbel. Barbel tissue regenerates rapidly, reaching maximal regrowth within 2 weeks of injury. Techniques for analyzing the regenerated barbel include dissecting and embedding matched pairs of barbels (regenerate and control) in the wells of a standard DNA electrophoresis gel. Embedded specimens are conveniently photographed under a stereomicroscope for gross morphology and morphometry, and can be stored for weeks prior to downstream applications such as paraffin histology, cryosectioning, and/or whole mount immunohistochemistry. These methods establish the maxillary barbel as a novel in vivo tissue system for studying the regenerative capacity of multiple cell types within the genetic context of zebrafish.
Developmental Biology, Issue 33, zebrafish, regeneration, barbel, surgery, vasculature, circulation, imaging, agar, embedding, microscopy
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
Play Button
A Novel Method for Assessing Proximal and Distal Forelimb Function in the Rat: the Irvine, Beatties and Bresnahan (IBB) Forelimb Scale
Authors: Karen-Amanda Irvine, Adam R. Ferguson, Kathleen D. Mitchell, Stephanie B. Beattie, Michael S. Beattie, Jacqueline C. Bresnahan.
Institutions: University of California, San Francisco.
Several experimental models of cervical spinal cord injury (SCI) have been developed recently to assess the consequences of damage to this level of the spinal cord (Pearse et al., 2005, Gensel et al., 2006, Anderson et al., 2009), as the majority of human SCI occur here (Young, 2010; Behavioral deficits include loss of forelimb function due to damage to the white matter affecting both descending motor and ascending sensory systems, and to the gray matter containing the segmental circuitry for processing sensory input and motor output for the forelimb. Additionally, a key priority for human patients with cervical SCI is restoration of hand/arm function (Anderson, 2004). Thus, outcome measures that assess both proximal and distal forelimb function are needed. Although there are several behavioral assays that are sensitive to different aspects of forelimb recovery in experimental models of cervical SCI (Girgis et al., 2007, Gensel et al., 2006, Ballerman et al., 2001, Metz and Whishaw, 2000, Bertelli and Mira, 1993, Montoya et al., 1991, Whishaw and Pellis, 1990), few techniques provide detailed information on the recovery of fine motor control and digit movement. The current measurement technique, the Irvine, Beatties and Bresnahan forelimb scale (IBB), can detect recovery of both proximal and distal forelimb function including digit movements during a naturally occurring behavior that does not require extensive training or deprivation to enhance motivation. The IBB was generated by observing recovery after a unilateral C6 SCI, and involves video recording of animals eating two differently shaped cereals (spherical and doughnut) of a consistent size. These videos were then used to assess features of forelimb use, such as joint position, object support, digit movement and grasping technique. The IBB, like other forelimb behavioral tasks, shows a consistent pattern of recovery that is sensitive to injury severity. Furthermore, the IBB scale could be used to assess recovery following other types of injury that impact normal forelimb function.
Neuroscience, Issue 46, spinal cord injury, recovery of function, forelimb function, neurological test, cervical injuries
Play Button
Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals in Axons: Student Laboratory Exercises
Authors: Martha M. Robinson, Jonathan M. Martin, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
This is a demonstration of how electrical models can be used to characterize biological membranes. This exercise also introduces biophysical terminology used in electrophysiology. The same equipment is used in the membrane model as on live preparations. Some properties of an isolated nerve cord are investigated: nerve action potentials, recruitment of neurons, and responsiveness of the nerve cord to environmental factors.
Basic Protocols, Issue 47, Invertebrate, Crayfish, Modeling, Student laboratory, Nerve cord
Play Button
A System for Culturing Iris Pigment Epithelial Cells to Study Lens Regeneration in Newt
Authors: Rital B. Bhavsar, Kenta Nakamura, Panagiotis A. Tsonis.
Institutions: University of Dayton, University of Dayton.
Salamanders like newt and axolotl possess the ability to regenerate many of its lost body parts such as limbs, the tail with spinal cord, eye, brain, heart, the jaw 1. Specifically, newts are unique for its lens regeneration capability. Upon lens removal, IPE cells of the dorsal iris transdifferentiate to lens cells and eventually form a new lens in about a month 2,3. This property of regeneration is never exhibited by the ventral iris cells. The regeneration potential of the iris cells can be studied by making transplants of the in vitro cultured IPE cells. For the culture, the dorsal and ventral iris cells are first isolated from the eye and cultured separately for a time period of 2 weeks (Figure 1). These cultured cells are reaggregated and implanted back to the newt eye. Past studies have shown that the dorsal reaggregate maintains its lens forming capacity whereas the ventral aggregate does not form a lens, recapitulating, thus the in vivo process (Figure 2) 4,5. This system of determining regeneration potential of dorsal and ventral iris cells is very useful in studying the role of genes and proteins involved in lens regeneration.
Cellular Biology, Issue 52, IPE cells, lens, regeneration, newt
Play Button
Transplantation of Cells Directly into the Kidney of Adult Zebrafish
Authors: Cuong Q. Diep, Alan J. Davidson.
Institutions: Massachusetts General Hospital.
Regenerative medicine based on the transplantation of stem or progenitor cells into damaged tissues has the potential to treat a wide range of chronic diseases1. However, most organs are not easily accessible, necessitating the need to develop surgical methods to gain access to these structures. In this video article, we describe a method for transplanting cells directly into the kidney of adult zebrafish, a popular model to study regeneration and disease2. Recipient fish are pre-conditioned by irradiation to suppress the immune rejection of the injected cells3. We demonstrate how the head kidney can be exposed by a lateral incision in the flank of the fish, followed by the injection of cells directly in to the organ. Using fluorescently labeled whole kidney marrow cells comprising a mixed population of renal and hematopoietic precursors, we show that nephron progenitors can engraft and differentiate into new renal tissue - the gold standard of any cell-based regenerative therapy. This technique can be adapted to deliver purified stem or progenitor cells and/or small molecules to the kidney as well as other internal organs and further enhances the zebrafish as a versatile model to study regenerative medicine.
Cellular Biology, Issue 51, zebrafish, kidney, regeneration, transplantation
Play Button
Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian Dugesia japonica
Authors: John D. Chan, Jonathan S. Marchant.
Institutions: University of Minnesota Medical School.
Free-living planarian flatworms have a long history of experimental usage owing to their remarkable regenerative abilities1. Small fragments excised from these animals reform the original body plan following regeneration of missing body structures. For example if a 'trunk' fragment is cut from an intact worm, a new 'head' will regenerate anteriorly and a 'tail' will regenerate posteriorly restoring the original 'head-to-tail' polarity of body structures prior to amputation (Figure 1A). Regeneration is driven by planarian stem cells, known as 'neoblasts' which differentiate into ~30 different cell types during normal body homeostasis and enforced tissue regeneration. This regenerative process is robust and easy to demonstrate. Owing to the dedication of several pioneering labs, many tools and functional genetic methods have now been optimized for this model system. Consequently, considerable recent progress has been made in understanding and manipulating the molecular events underpinning planarian developmental plasticity2-9. The planarian model system will be of interest to a broad range of scientists. For neuroscientists, the model affords the opportunity to study the regeneration of an entire nervous system, rather than simply the regrowth/repair of single nerve cell process that typically are the focus of study in many established models. Planarians express a plethora of neurotransmitters10, represent an important system for studying evolution of the central nervous system11, 12 and have behavioral screening potential13, 14. Regenerative outcomes are amenable to manipulation by pharmacological and genetic apparoaches. For example, drugs can be screened for effects on regeneration simply by placing body fragments in drug-containing solutions at different time points after amputation. The role of individual genes can be studied using knockdown methods (in vivo RNAi), which can be achieved either through cycles of microinjection or by feeding bacterially-expressed dsRNA constructs8, 9, 15. Both approaches can produce visually striking phenotypes at high penetrance- for example, regeneration of bipolar animals16-21. To facilitate adoption of this model and implementation of such methods, we showcase in this video article protocols for pharmacological and genetic assays (in vivo RNAi by feeding) using the planarian Dugesia japonica.
Developmental Biology, Issue 54, Stem Cells, Regeneration, Planarian, Flatworm, Dugesia japonica
Play Button
In vivo Electroporation of Morpholinos into the Regenerating Adult Zebrafish Tail Fin
Authors: David R. Hyde, Alan R. Godwin, Ryan Thummel.
Institutions: University of Notre Dame , Colorado State University , Wayne State University School of Medicine.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6. The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month. The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration. Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue. This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.
Developmental Biology, Issue 61, Electroporation, morpholino, zebrafish, fin, regeneration
Play Button
Genetic Study of Axon Regeneration with Cultured Adult Dorsal Root Ganglion Neurons
Authors: Saijilafu, Feng-Quan Zhou.
Institutions: Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7. Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.
Neuroscience, Issue 66, Physiology, Developmental Biology, cell culture, axon regeneration, axon growth, dorsal root ganglion, spinal cord injury
Play Button
Transplantation of Induced Pluripotent Stem Cell-derived Mesoangioblast-like Myogenic Progenitors in Mouse Models of Muscle Regeneration
Authors: Mattia F. M. Gerli, Sara M. Maffioletti, Queensta Millet, Francesco Saverio Tedesco.
Institutions: University College London, San Raffaele Hospital.
Patient-derived iPSCs could be an invaluable source of cells for future autologous cell therapy protocols. iPSC-derived myogenic stem/progenitor cells similar to pericyte-derived mesoangioblasts (iPSC-derived mesoangioblast-like stem/progenitor cells: IDEMs) can be established from iPSCs generated from patients affected by different forms of muscular dystrophy. Patient-specific IDEMs can be genetically corrected with different strategies (e.g. lentiviral vectors, human artificial chromosomes) and enhanced in their myogenic differentiation potential upon overexpression of the myogenesis regulator MyoD. This myogenic potential is then assessed in vitro with specific differentiation assays and analyzed by immunofluorescence. The regenerative potential of IDEMs is further evaluated in vivo, upon intramuscular and intra-arterial transplantation in two representative mouse models displaying acute and chronic muscle regeneration. The contribution of IDEMs to the host skeletal muscle is then confirmed by different functional tests in transplanted mice. In particular, the amelioration of the motor capacity of the animals is studied with treadmill tests. Cell engraftment and differentiation are then assessed by a number of histological and immunofluorescence assays on transplanted muscles. Overall, this paper describes the assays and tools currently utilized to evaluate the differentiation capacity of IDEMs, focusing on the transplantation methods and subsequent outcome measures to analyze the efficacy of cell transplantation.
Bioengineering, Issue 83, Skeletal Muscle, Muscle Cells, Muscle Fibers, Skeletal, Pericytes, Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Muscular Dystrophies, Cell Differentiation, animal models, muscle stem/progenitor cells, mesoangioblasts, muscle regeneration, iPSC-derived mesoangioblasts (IDEMs)
Play Button
Preparation of 2-dGuo-Treated Thymus Organ Cultures
Authors: William Jenkinson, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
In the thymus, interactions between developing T-cell precursors and stromal cells that include cortical and medullary epithelial cells are known to play a key role in the development of a functionally competent T-cell pool. However, the complexity of T-cell development in the thymus in vivo can limit analysis of individual cellular components and particular stages of development. In vitro culture systems provide a readily accessible means to study multiple complex cellular processes. Thymus organ culture systems represent a widely used approach to study intrathymic development of T-cells under defined conditions in vitro. Here we describe a system in which mouse embryonic thymus lobes can be depleted of endogenous haemopoeitic elements by prior organ culture in 2-deoxyguanosine, a compound that is selectively toxic to haemopoeitic cells. As well as providing a readily accessible source of thymic stromal cells to investigate the role of thymic microenvironments in the development and selection of T-cells, this technique also underpins further experimental approaches that include the reconstitution of alymphoid thymus lobes in vitro with defined haemopoietic elements, the transplantation of alymphoid thymuses into recipient mice, and the formation of reaggregate thymus organ cultures. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
Play Button
Organotypic Slice Culture of E18 Rat Brains
Authors: Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
Organotypic slice cultures from embryonic rodent brains are widely used to study brain development. While there are often advantages to an in-vivo system, organotypic slice cultures allow one to perform a number of manipulations that are not presently feasible in-vivo. To date, organtotypic embryonic brain slice cultures have been used to follow individual cells using time-lapse microscopy, manipulate the expression of genes in the ganglionic emanances (a region that is hard to target by in-utero electroporation), as well as for pharmacological studies. In this video protocol we demonstrate how to make organotypic slice cultures from rat embryonic day 18 embryos. The protocol involves dissecting the embryos, embedding them on ice in low melt agarose, slicing the embedded brains on the vibratome, and finally plating the slices onto filters in culture dishes. This protocol is also applicable in its present form to making organotypic slice cultures from different embryonic ages for both rats and mice.
Neuroscience, Issue 6, brain, culture, dissection, rat
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.