JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Conserving the birds of Ugandas banana-coffee arc: land sparing and land sharing compared.
PUBLISHED: 02-04-2013
Reconciling the aims of feeding an ever more demanding human population and conserving biodiversity is a difficult challenge. Here, we explore potential solutions by assessing whether land sparing (farming for high yield, potentially enabling the protection of non-farmland habitat), land sharing (lower yielding farming with more biodiversity within farmland) or a mixed strategy would result in better bird conservation outcomes for a specified level of agricultural production. We surveyed forest and farmland study areas in southern Uganda, measuring the population density of 256 bird species and agricultural yield: food energy and gross income. Parametric non-linear functions relating density to yield were fitted. Species were identified as "winners" (total population size always at least as great with agriculture present as without it) or "losers" (total population sometimes or always reduced with agriculture present) for a range of targets for total agricultural production. For each target we determined whether each species would be predicted to have a higher total population with land sparing, land sharing or with any intermediate level of sparing at an intermediate yield. We found that most species were expected to have their highest total populations with land sparing, particularly loser species and species with small global range sizes. Hence, more species would benefit from high-yield farming if used as part of a strategy to reduce forest loss than from low-yield farming and land sharing, as has been found in Ghana and India in a previous study. We caution against advocacy for high-yield farming alone as a means to deliver land sparing if it is done without strong protection for natural habitats, other ecosystem services and social welfare. Instead, we suggest that conservationists explore how conservation and agricultural policies can be better integrated to deliver land sparing by, for example, combining land-use planning and agronomic support for small farmers.
Authors: Audrey R. Matteson, Denis J. Mahoney, Travis W. Gannon, Matthew L. Polizzotto.
Published: 07-04-2014
Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.
22 Related JoVE Articles!
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy
Authors: Frederick R. Bartlett, Ruth M. Colgan, Ellen M. Donovan, Karen Carr, Steven Landeg, Nicola Clements, Helen A. McNair, Imogen Locke, Philip M. Evans, Joanne S. Haviland, John R. Yarnold, Anna M. Kirby.
Institutions: Royal Marsden NHS Foundation Trust, University of Surrey, Institute of Cancer Research, Sutton, UK, Institute of Cancer Research, Sutton, UK.
Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery.
Medicine, Issue 89, breast, radiotherapy, heart, cardiac dose, breath-hold
Play Button
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Authors: Leonard C. Kibet, Louis S. Saporito, Arthur L. Allen, Eric B. May, Peter J. A. Kleinman, Fawzy M. Hashem, Ray B. Bryant.
Institutions: University of Maryland Eastern Shore, USDA - Agricultural Research Service, University of Maryland Eastern Shore.
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
Environmental Sciences, Issue 86, Agriculture, Water Pollution, Water Quality, Technology, Industry, and Agriculture, Rainfall Simulator, Artificial Rainfall, Runoff, Packed Soil Boxes, Nonpoint Source, Urea
Play Button
Tissue-simulating Phantoms for Assessing Potential Near-infrared Fluorescence Imaging Applications in Breast Cancer Surgery
Authors: Rick Pleijhuis, Arwin Timmermans, Johannes De Jong, Esther De Boer, Vasilis Ntziachristos, Gooitzen Van Dam.
Institutions: University Medical Center Groningen, Technical University of Munich.
Inaccuracies in intraoperative tumor localization and evaluation of surgical margin status result in suboptimal outcome of breast-conserving surgery (BCS). Optical imaging, in particular near-infrared fluorescence (NIRF) imaging, might reduce the frequency of positive surgical margins following BCS by providing the surgeon with a tool for pre- and intraoperative tumor localization in real-time. In the current study, the potential of NIRF-guided BCS is evaluated using tissue-simulating breast phantoms for reasons of standardization and training purposes. Breast phantoms with optical characteristics comparable to those of normal breast tissue were used to simulate breast conserving surgery. Tumor-simulating inclusions containing the fluorescent dye indocyanine green (ICG) were incorporated in the phantoms at predefined locations and imaged for pre- and intraoperative tumor localization, real-time NIRF-guided tumor resection, NIRF-guided evaluation on the extent of surgery, and postoperative assessment of surgical margins. A customized NIRF camera was used as a clinical prototype for imaging purposes. Breast phantoms containing tumor-simulating inclusions offer a simple, inexpensive, and versatile tool to simulate and evaluate intraoperative tumor imaging. The gelatinous phantoms have elastic properties similar to human tissue and can be cut using conventional surgical instruments. Moreover, the phantoms contain hemoglobin and intralipid for mimicking absorption and scattering of photons, respectively, creating uniform optical properties similar to human breast tissue. The main drawback of NIRF imaging is the limited penetration depth of photons when propagating through tissue, which hinders (noninvasive) imaging of deep-seated tumors with epi-illumination strategies.
Medicine, Issue 91, Breast cancer, tissue-simulating phantoms, NIRF imaging, tumor-simulating inclusions, fluorescence, intraoperative imaging
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Corticospinal Excitability Modulation During Action Observation
Authors: Luisa Sartori, Sonia Betti, Umberto Castiello.
Institutions: Universita degli Studi di Padova.
This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else's action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person's actions produces motor facilitation in an onlooker's corresponding muscles and in what way corticospinal excitability is modulated in social contexts.
Behavior, Issue 82, action observation, transcranial magnetic stimulation, motor evoked potentials, corticospinal excitability
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
Play Button
Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury
Authors: Stephanie C. Penley, Cynthia M. Gaudet, Steven W. Threlkeld.
Institutions: Rhode Island College, Rhode Island College.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Behavior, Issue 82, working memory, reference memory, hypoxia-ischemia, radial arm maze, water maze
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control
Authors: Soroush Parsa, Viviana Ortiz, Fernando E. Vega.
Institutions: International Center for Tropical Agriculture (CIAT), Cali, Colombia , United States Department of Agriculture, Beltsville, Maryland, USA.
Beauveria bassiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common bean (Phaseolus vulgaris), in preparation for subsequent evaluations of endophytic biological control. Plants are grown from surface-sterilized seeds for two weeks before receiving a B. bassiana treatment of 108 conidia/ml (or water) applied either as a foliar spray or a soil drench. Two weeks later, the plants are harvested and their leaves, stems and roots are sampled to evaluate endophytic fungal colonization. For this, samples are individually surface sterilized, cut into multiple sections, and incubated in potato dextrose agar media for 20 days. The media is inspected every 2-3 days to observe fungal growth associated with plant sections and record the occurrence of B. bassiana to estimate the extent of its endophytic colonization. Analyses of inoculation success compare the occurrence of B. bassiana within a given plant part (i.e. leaves, stems or roots) across treatments and controls. In addition to the inoculation method, the specific outcome of the experiment may depend on the target crop species or variety, the fungal entomopathogen species strain or isolate used, and the plant's growing conditions.
Bioengineering, Issue 74, Plant Biology, Microbiology, Infection, Environmental Sciences, Molecular Biology, Mycology, Entomology, Botany, Pathology, Agriculture, Pest Control, Fungi, Entomopathogen, Endophyte, Pest, Pathogen, Phaseolus vulgaris, Beauveria bassiana, Sustainable Agriculture, hemocytometer, inoculation, fungus
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
Depletion of Specific Cell Populations by Complement Depletion
Authors: Bonnie N. Dittel.
Institutions: Blood Research Institute.
The purification of immune cell populations is often required in order to study their unique functions. In particular, molecular approaches such as real-time PCR and microarray analysis require the isolation of cell populations with high purity. Commonly used purification strategies include fluorescent activated cell sorting (FACS), magnetic bead separation and complement depletion. Of the three strategies, complement depletion offers the advantages of being fast, inexpensive, gentle on the cells and a high cell yield. The complement system is composed of a large number of plasma proteins that when activated initiate a proteolytic cascade culminating in the formation of a membrane-attack complex that forms a pore on a cell surface resulting in cell death1. The classical pathway is activated by IgM and IgG antibodies and was first described as a mechanism for killing bacteria. With the generation of monoclonal antibodies (mAb), the complement cascade can be used to lyse any cell population in an antigen-specific manner. Depletion of cells by the complement cascade is achieved by the addition of complement fixing antigen-specific antibodies and rabbit complement to the starting cell population. The cells are incubated for one hour at 37°C and the lysed cells are subsequently removed by two rounds of washing. MAb with a high efficiency for complement fixation typically deplete 95-100% of the targeted cell population. Depending on the purification strategy for the targeted cell population, complement depletion can be used for cell purification or for the enrichment of cell populations that then can be further purified by a subsequent method.
JoVE Immunology, Issue 36, rabbit, complement, cell isolation, cell depletion
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
Play Button
Biocontained Carcass Composting for Control of Infectious Disease Outbreak in Livestock
Authors: Tim Reuter, Weiping Xu, Trevor W. Alexander, Brandon H. Gilroyed, G. Douglas Inglis, Francis J. Larney, Kim Stanford, Tim A. McAllister.
Institutions: Lethbridge Research Centre, Dalian University of Technology, Alberta Agriculture and Rural Development.
Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal. Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55°C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling ~95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were placed between adjacent carcasses, extending vertically along both inside walls, and with the ends passed though the plastic to the exterior. The carcasses were overlaid with moist aerated feedlot manure (~1.6 m deep) to the top of the bunker. Plastic was folded over the top and sealed with tape to establish a containment barrier and eight aeration vents (50 x 50 x 15 cm) were placed on the top of each structure to promote passive aeration. After 147 days, losses of volume and mass of composted materials averaged 39.8% and 23.7%, respectively, in each structure.
JoVE Infectious Diseases, Issue 39, compost, livestock, infectious disease, biocontainment
Play Button
Characterizing Herbivore Resistance Mechanisms: Spittlebugs on Brachiaria spp. as an Example
Authors: Soroush Parsa, Guillermo Sotelo, Cesar Cardona.
Institutions: CIAT.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore's growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3. We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.
Plant Biology, Issue 52, host plant resistance, antibiosis, antixenosis, tolerance, Brachiaria, spittlebugs
Play Button
Spatial Multiobjective Optimization of Agricultural Conservation Practices using a SWAT Model and an Evolutionary Algorithm
Authors: Sergey Rabotyagov, Todd Campbell, Adriana Valcu, Philip Gassman, Manoj Jha, Keith Schilling, Calvin Wolter, Catherine Kling.
Institutions: University of Washington, Iowa State University, North Carolina A&T University, Iowa Geological and Water Survey.
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,5,12,20) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods3,4,9,10,13-15,17-19,22,23,25. In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model7 with a multiobjective evolutionary algorithm SPEA226, and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.
Environmental Sciences, Issue 70, Plant Biology, Civil Engineering, Forest Sciences, Water quality, multiobjective optimization, evolutionary algorithms, cost efficiency, agriculture, development
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.