JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The synthetic melanocortin (CKPV)2 exerts anti-fungal and anti-inflammatory effects against Candida albicans vaginitis via inducing macrophage M2 polarization.
PLoS ONE
PUBLISHED: 01-04-2013
In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-?, IL-1? and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation.
Authors: Charlotte Berkes, Leo Li-Ying Chan, Alisha Wilkinson, Benjamin Paradis.
Published: 06-19-2013
ABSTRACT
Studies of the cellular pathogenesis mechanisms of pathogenic yeasts such as Candida albicans, Histoplasma capsulatum, and Cryptococcus neoformans commonly employ infection of mammalian hosts or host cells (i.e. macrophages) followed by yeast quantification using colony forming unit analysis or flow cytometry. While colony forming unit enumeration has been the most commonly used method in the field, this technique has disadvantages and limitations, including slow growth of some fungal species on solid media and low and/or variable plating efficiencies, which is of particular concern when comparing growth of wild-type and mutant strains. Flow cytometry can provide rapid quantitative information regarding yeast viability, however, adoption of flow cytometric detection for pathogenic yeasts has been limited for a number of practical reasons including its high cost and biosafety considerations. Here, we demonstrate an image-based cytometric methodology using the Cellometer Vision (Nexcelom Bioscience, LLC) for the quantification of viable pathogenic yeasts in co-culture with macrophages. Our studies focus on detection of two human fungal pathogens: Histoplasma capsulatum and Candida albicans. H. capsulatum colonizes alveolar macrophages by replicating within the macrophage phagosome, and here, we quantitatively assess the growth of H. capsulatum yeasts in RAW 264.7 macrophages using acridine orange/propidium iodide staining in combination with image cytometry. Our method faithfully recapitulates growth trends as measured by traditional colony forming unit enumeration, but with significantly increased sensitivity. Additionally, we directly assess infection of live macrophages with a GFP-expressing strain of C. albicans. Our methodology offers a rapid, accurate, and economical means for detection and quantification of important human fungal pathogens in association with host cells.
14 Related JoVE Articles!
Play Button
Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of Candida vaginitis
Authors: Junko Yano, Paul L. Fidel, Jr..
Institutions: Louisiana State University Health Sciences Center.
Vulvovaginal candidiasis (VVC), caused by Candida species, is a fungal infection of the lower female genital tract that affects approximately 75% of otherwise healthy women during their reproductive years18,32-34. Predisposing factors include antibiotic usage, uncontrolled diabetes and disturbance in reproductive hormone levels due to pregnancy, oral contraceptives or hormone replacement therapies33,34. Recurrent VVC (RVVC), defined as three or more episodes per year, affects a separate 5 to 8% of women with no predisposing factors33. An experimental mouse model of VVC has been established and used to study the pathogenesis and mucosal host response to Candida3,4,11,16,17,19,21,25,37. This model has also been employed to test potential antifungal therapies in vivo13,24. The model requires that the animals be maintained in a state of pseudoestrus for optimal Candida colonization/infection6,14,23. Under such conditions, inoculated animals will have detectable vaginal fungal burden for weeks to months. Past studies show an extremely high parallel between the animal model and human infection relative to immunological and physiological properties3,16,21. Differences, however, include a lack of Candida as normal vaginal flora and a neutral vaginal pH in the mice. Here, we demonstrate a series of key methods in the mouse vaginitis model that include vaginal inoculation, rapid collection of vaginal specimens, assessment of vaginal fungal burden, and tissue preparations for cellular extraction/isolation. This is followed by representative results for constituents of vaginal lavage fluid, fungal burden, and draining lymph node leukocyte yields. With the use of anesthetics, lavage samples can be collected at multiple time points on the same mice for longitudinal evaluation of infection/colonization. Furthermore, this model requires no immunosuppressive agents to initiate infection, allowing immunological studies under defined host conditions. Finally, the model and each technique introduced here could potentially give rise to use of the methodologies to examine other infectious diseases of the lower female genital tract (bacterial, parasitic, viral) and respective local or systemic host defenses.
Immunology, Issue 58, Candida albicans, vaginitis, mouse, lumbar lymph nodes, vaginal tissues, vaginal lavage
3382
Play Button
Live-cell Video Microscopy of Fungal Pathogen Phagocytosis
Authors: Leanne E. Lewis, Judith M. Bain, Blessing Okai, Neil A.R. Gow, Lars Peter Erwig.
Institutions: University of Aberdeen, University of Aberdeen.
Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms.
Infection, Issue 71, Immunology, Microbiology, Medicine, Cellular Biology, Molecular Biology, Infectious Diseases, Mycoses, Candidiasis, Bacterial Infections and Mycoses, Immune System Diseases, Live-cell imaging, phagocytosis, Candida albicans, host-pathogen interaction, pathogen, pathogen-associated molecular patterns, pattern recognition receptors, macrophage, fungus
50196
Play Button
Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages
Authors: Wei Ying, Patali S. Cheruku, Fuller W. Bazer, Stephen H. Safe, Beiyan Zhou.
Institutions: Texas A&M University, Texas A&M University, Texas A&M University.
The article describes a readily easy adaptive in vitro model to investigate macrophage polarization. In the presence of GM-CSF/M-CSF, hematopoietic stem/progenitor cells from the bone marrow are directed into monocytic differentiation, followed by M1 or M2 stimulation. The activation status can be tracked by changes in cell surface antigens, gene expression and cell signaling pathways.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, Genetics, Biomedical Engineering, biology (general), genetics (animal and plant), immunology, life sciences, Life Sciences (General), macrophage polarization, bone marrow derived macrophage, flow cytometry, PCR, animal model
50323
Play Button
Establishment of an In vitro System to Study Intracellular Behavior of Candida glabrata in Human THP-1 Macrophages
Authors: Maruti Nandan Rai, Sapan Borah, Gaurav Bairwa, Sriram Balusu, Neelima Gorityala, Rupinder Kaur.
Institutions: Centre for DNA Fingerprinting and Diagnostics, Andhra Pradesh, India, Fiers-Schell-Van Montagu Building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.
A cell culture model system, if a close mimic of host environmental conditions, can serve as an inexpensive, reproducible and easily manipulatable alternative to animal model systems for the study of a specific step of microbial pathogen infection. A human monocytic cell line THP-1 which, upon phorbol ester treatment, is differentiated into macrophages, has previously been used to study virulence strategies of many intracellular pathogens including Mycobacterium tuberculosis. Here, we discuss a protocol to enact an in vitro cell culture model system using THP-1 macrophages to delineate the interaction of an opportunistic human yeast pathogen Candida glabrata with host phagocytic cells. This model system is simple, fast, amenable to high-throughput mutant screens, and requires no sophisticated equipment. A typical THP-1 macrophage infection experiment takes approximately 24 hr with an additional 24-48 hr to allow recovered intracellular yeast to grow on rich medium for colony forming unit-based viability analysis. Like other in vitro model systems, a possible limitation of this approach is difficulty in extrapolating the results obtained to a highly complex immune cell circuitry existing in the human host. However, despite this, the current protocol is very useful to elucidate the strategies that a fungal pathogen may employ to evade/counteract antimicrobial response and survive, adapt, and proliferate in the nutrient-poor environment of host immune cells.
Immunology, Issue 82, Candida glabrata, THP-1 macrophages, colony forming unit (CFU) assay, fluorescence microscopy, signature-tagged mutagenesis
50625
Play Button
Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection
Authors: Remi L. Gratacap, Audrey C. Bergeron, Robert T. Wheeler.
Institutions: University of Maine, University of Maine.
Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces.
Immunology, Issue 93, Zebrafish, mucosal candidiasis, mucosal infection, epithelial barrier, epithelial cells, innate immunity, swimbladder, Candida albicans, in vivo.
52182
Play Button
Visualizing Non-lytic Exocytosis of Cryptococcus neoformans from Macrophages Using Digital Light Microscopy
Authors: Sabriya Stukes, Arturo Casadevall.
Institutions: Albert Einstein College of Medicine.
Many aspects of the infection of macrophages by Cryptococcus neoformans have been extensively studied and well defined. However, one particular interaction that is not clearly understood is non-lytic exocytosis. In this process, yeast cells are released into the extracellular space by a poorly understood mechanism that leaves both the macrophage and Cn viable. Here, we describe how to follow a large number of individually infected macrophages for a 24 hr infection period by time-lapsed microscopy. Infected macrophages are housed in a heating chamber with a CO2 atmosphere attached to a microscope that provides the same conditions as a cell-culture incubator. Live digital microscopy can provide information about the dynamic interactions between a host and pathogen that is not available from static images. Being able to visualize each infected cell can provide clues as to how macrophages handle fungal infections, and vice versa. This technique is a powerful tool in studying the dynamics that are behind a complex phenomenon.
Immunology, Issue 92, Non-Lytic Exocytosis, Macrophages, C. neoformans, Fungus, Host-Pathogen Interactions
52084
Play Button
Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy
Authors: Melissa J. Grimm, Anthony C. D'Auria, Brahm H. Segal.
Institutions: Roswell Park Cancer Institute, University of Buffalo.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.
Immunology, Issue 89, macrophage, bronchoalveolar lavage, Aspergillus, confocal microscopy, phagocytosis, anti-fungal activity, NADPH oxidase
51678
Play Button
Whole-cell MALDI-TOF Mass Spectrometry is an Accurate and Rapid Method to Analyze Different Modes of Macrophage Activation
Authors: Richard Ouedraogo, Aurélie Daumas, Christian Capo, Jean-Louis Mege, Julien Textoris.
Institutions: Aix Marseille Université, Hôpital de la Timone.
MALDI-TOF is an extensively used mass spectrometry technique in chemistry and biochemistry. It has been also applied in medicine to identify molecules and biomarkers. Recently, it has been used in microbiology for the routine identification of bacteria grown from clinical samples, without preparation or fractionation steps. We and others have applied this whole-cell MALDI-TOF mass spectrometry technique successfully to eukaryotic cells. Current applications range from cell type identification to quality control assessment of cell culture and diagnostic applications. Here, we describe its use to explore the various polarization phenotypes of macrophages in response to cytokines or heat-killed bacteria. It allowed the identification of macrophage-specific fingerprints that are representative of the diversity of proteomic responses of macrophages. This application illustrates the accuracy and simplicity of the method. The protocol we described here may be useful for studying the immune host response in pathological conditions or may be extended to wider diagnostic applications.
Immunology, Issue 82, MALDI-TOF, mass spectrometry, fingerprint, Macrophages, activation, IFN-g, TNF, LPS, IL-4, bacterial pathogens
50926
Play Button
Three-dimensional Confocal Analysis of Microglia/macrophage Markers of Polarization in Experimental Brain Injury
Authors: Carlo Perego, Stefano Fumagalli, Maria-Grazia De Simoni.
Institutions: IRCCS - Istituto di Ricerche Farmacologiche Mario Negri.
After brain stroke microglia/macrophages (M/M) undergo rapid activation with dramatic morphological and phenotypic changes that include expression of novel surface antigens and production of mediators that build up and maintain the inflammatory response. Emerging evidence indicates that M/M are highly plastic cells that can assume classic pro-inflammatory (M1) or alternative anti-inflammatory (M2) activation after acute brain injury. However a complete characterization of M/M phenotype marker expression, their colocalization and temporal evolution in the injured brain is still missing. Immunofluorescence protocols specifically staining relevant markers of M/M activation can be performed in the ischemic brain. Here we present immunofluorescence-based protocols followed by three-dimensional confocal analysis as a powerful approach to investigate the pattern of localization and co-expression of M/M phenotype markers such as CD11b, CD68, Ym1, in mouse model of focal ischemia induced by permanent occlusion of the middle cerebral artery (pMCAO). Two-dimensional analysis of the stained area reveals that each marker is associated to a defined M/M morphology and has a given localization in the ischemic lesion. Patterns of M/M phenotype marker co-expression can be assessed by three-dimensional confocal imaging in the ischemic area. Images can be acquired over a defined volume (10 μm z-axis and a 0.23 μm step size, corresponding to a 180 x 135 x 10 μm volume) with a sequential scanning mode to minimize bleed-through effects and avoid wavelength overlapping. Images are then processed to obtain three-dimensional renderings by means of Imaris software. Solid view of three dimensional renderings allows the definition of marker expression in clusters of cells. We show that M/M have the ability to differentiate towards a multitude of phenotypes, depending on the location in the lesion site and time after injury.
Neurobiology, Issue 79, Neuroscience, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Anatomy, Physiology, Central Nervous System Diseases, Neurodegenerative Diseases, biology (general), immunology, life sciences, animal models, Inflammation, stroke, alternative activation, brain injury, brain, imaging, confocal microscopy, three-dimensional imaging, clinical techniques, mouse, animal model
50605
Play Button
A 96 Well Microtiter Plate-based Method for Monitoring Formation and Antifungal Susceptibility Testing of Candida albicans Biofilms
Authors: Christopher G. Pierce, Priya Uppuluri, Sushma Tummala, Jose L. Lopez-Ribot.
Institutions: University of Texas San Antonio - UTSA, University of Texas San Antonio - UTSA.
Candida albicans remains the most frequent cause of fungal infections in an expanding population of compromised patients and candidiasis is now the third most common infection in US hospitals. Different manifestations of candidiasis are associated with biofilm formation, both on host tissues and/or medical devices (i.e. catheters). Biofilm formation carries negative clinical implications, as cells within the biofilms are protected from host immune responses and from the action of antifungals. We have developed a simple, fast and robust in vitro model for the formation of C. albicans biofilms using 96 well microtiter-plates, which can also be used for biofilm antifungal susceptibility testing. The readout of this assay is colorimetric, based on the reduction of XTT (a tetrazolium salt) by metabolically active fungal biofilm cells. A typical experiment takes approximately 24 h for biofilm formation, with an additional 24 h for antifungal susceptibility testing. Because of its simplicity and the use of commonly available laboratory materials and equipment, this technique democratizes biofilm research and represents an important step towards the standardization of antifungal susceptibility testing of fungal biofilms.
Immunology, Issue 44, Microbiology, Medical Mycology, Candida, candidiasis, biofilms, antifungals
2287
Play Button
Depletion and Reconstitution of Macrophages in Mice
Authors: Shelley B. Weisser, Nico van Rooijen, Laura M. Sly.
Institutions: University of British Columbia , Vrije Universiteit Amsterdam, University of British Columbia .
Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).
Immunology, Issue 66, Molecular Biology, macrophages, clodronate-containing liposomes, macrophage depletion, macrophage derivation, macrophage reconstitution
4105
Play Button
Non-invasive Imaging of Disseminated Candidiasis in Zebrafish Larvae
Authors: Kimberly M. Brothers, Robert T. Wheeler.
Institutions: University of Maine.
Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality6. Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia7-9. Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils10-14. In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts10, 15-18. To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host. The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses2, 19-21, simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection22-24. Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection5. In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color. The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection3, 25. However, only recently have much larger pathogens such as fungi been used to infect larva5, 23, 26, and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim25 zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish5.
Immunology, Issue 65, Infection, Molecular Biology, Developmental Biology, Candida albicans, candidiasis, zebrafish larvae, Danio rerio, microinjection, confocal imaging
4051
Play Button
Candida albicans Biofilm Chip (CaBChip) for High-throughput Antifungal Drug Screening
Authors: Anand Srinivasan, Jose L. Lopez-Ribot, Anand K. Ramasubramanian.
Institutions: University of Texas at San Antonio , University of Texas at San Antonio .
Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals1. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents2. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip3. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance)4. Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation5), the main advantages of the fungal biofilm chip are automation, miniaturization, savings in amount and cost of reagents and analyses time, as well as the elimination of labor intensive steps. We believe that such chip will significantly speed up the antifungal drug discovery process.
Biomedical Engineering, Issue 65, Bioengineering, Immunology, Infection, Molecular Biology, Candida albicans, Biofilm, High-throughput screening
3845
Play Button
Proteomic Profiling of Macrophages by 2D Electrophoresis
Authors: Marion Bouvet, Annie Turkieh, Adelina E. Acosta-Martin, Maggy Chwastyniak, Olivia Beseme, Philippe Amouyel, Florence Pinet.
Institutions: University Lille Nord de France.
The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins.
Immunology, Issue 93, Biology, Human, Buffy coat, Monocytes, Macrophages, Culture, Proteins, Proteome, 2D DIGE-electrophoresis, 2D software
52219
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.