JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers.
PUBLISHED: 01-23-2013
The aim of this study was to assess whether migration of thallium-201 ((201)Tl) to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of (201)Tl.
Authors: Soumya Narayan, Charlee McLean, Akira Sawa, Sandra Y. Lin, Narayan Rai, MariaMananita S. Hipolito, Nicola Cascella, John J.I. Nurnberger, Jr., Koko Ishizuka, Evaristus A. Nwulia.
Published: 12-04-2014
Bipolar disorder (BD) is a severe neuropsychiatric disorder with poorly understood pathophysiology and typically treated with the mood stabilizer, lithium carbonate. Animal studies as well as human genetic studies indicate that lithium affects molecular targets that are involved in neuronal growth, survival and maturation, and notably molecules involved in Wnt signaling. Given the ethical challenge to obtaining brain biopsies for investigating dynamic molecular changes associated with lithium-response in the central nervous system (CNS), one may consider the use of neurons obtained from olfactory tissues to achieve this goal.The olfactory epithelium contains olfactory receptor neurons at different stages of development and glial-like supporting cells. This provides a unique opportunity to study dynamic changes in the CNS of patients with neuropsychiatric diseases, using olfactory tissue safely obtained from nasal biopsies. To overcome the drawback posed by substantial contamination of biopsied olfactory tissue with non-neuronal cells, a novel approach to obtain enriched neuronal cell populations was developed by combining nasal biopsies with laser-capture microdissection. In this study, a system for investigating treatment-associated dynamic molecular changes in neuronal tissue was developed and validated, using a small pilot sample of BD patients recruited for the study of the molecular mechanisms of lithium treatment response.
19 Related JoVE Articles!
Play Button
Olfactory Assays for Mouse Models of Neurodegenerative Disease
Authors: Andrew M. Lehmkuhl, Emily R. Dirr, Sheila M. Fleming.
Institutions: University of Cincinnati, University of Cincinnati, Wright State University.
In many neurodegenerative diseases and particularly in Parkinson’s disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson’s disease as well as in testing potential disease-modifying therapies.
Neuroscience, Issue 90, olfaction, mouse, Parkinson’s disease, detection, discrimination, sniffing
Play Button
Intranasal Administration of CNS Therapeutics to Awake Mice
Authors: Leah R. Hanson, Jared M. Fine, Aleta L. Svitak, Katherine A. Faltesek.
Institutions: HealthPartners Institute for Education and Research.
Intranasal administration is a method of delivering therapeutic agents to the central nervous system (CNS). It is non-invasive and allows large molecules that do not cross the blood-brain barrier access to the CNS. Drugs are directly targeted to the CNS with intranasal delivery, reducing systemic exposure and thus unwanted systemic side effects1. Delivery from the nose to the CNS occurs within minutes along both the olfactory and trigeminal neural pathways via an extracellular route and does not require drug to bind to any receptor or axonal transport2. Intranasal delivery is a widely publicized method and is currently being used in human clinical trials3. Intranasal delivery of drugs in animal models allows for initial evaluation of pharmacokinetic distribution and efficacy. With mice, it is possible to administer drugs to awake (non-anesthetized) animals on a regular basis using a specialized intranasal grip. Awake delivery is beneficial because it allows for long-term chronic dosing without anesthesia, it takes less time than with anesthesia, and can be learned and done by many people so that teams of technicians can dose large numbers of mice in short periods. Efficacy of therapeutics administered intranasally in this way to mice has been demonstrated in a number of studies including insulin in diabetic mouse models 4-6 and deferoxamine in Alzheimer's mouse models. 7,8 The intranasal grip for mice can be learned, but is not easy and requires practice, skill, and a precise grip to effectively deliver drug to the brain and avoid drainage to the lung and stomach. Mice are restrained by hand using a modified scruff in the non-dominant hand with the neck held parallel to the floor, while drug is delivered with a pipettor using the dominant hand. It usually takes 3-4 weeks of acclimating to handling before mice can be held with this grip without a stress response. We have prepared this JoVE video to make this intranasal delivery technique more accessible.
Medicine, Issue 74, Biomedical Engineering, Neuroscience, Anatomy, Physiology, Bioengineering, Neurobiology, Pharmacology, Intranasal, nasal, awake, mice, drug delivery, brain targeting, CNS, mouse acclimation, animal model, therapeutics, clinical techniques
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
Play Button
In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices
Authors: Martina Sonego, Ya Zhou, Madeleine Julie Oudin, Patrick Doherty, Giovanna Lalli.
Institutions: King's College London, Massachusetts Institute of Technology.
The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair.
Neuroscience, Issue 81, Time-Lapse Imaging, Cell Migration Assays, Electroporation, neurogenesis, neuroblast migration, neural stem cells, subventricular zone (SVZ), rostral migratory stream (RMS), neonatal mouse pups, electroporation, time-lapse imaging, brain slice culture, cell tracking
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
Play Button
High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity
Authors: Casey Trimmer, Lindsey L. Snyder, Joel D. Mainland.
Institutions: Monell Chemical Senses Center.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
Neuroscience, Issue 88, Firefly luciferase, Renilla Luciferase, Dual-Glo Luciferase Assay, olfaction, Olfactory receptor, Odorant, GPCR, High-throughput
Play Button
Ex Vivo Preparations of the Intact Vomeronasal Organ and Accessory Olfactory Bulb
Authors: Wayne I. Doyle, Gary F. Hammen, Julian P. Meeks.
Institutions: UT Southwestern Medical Center, Washington University in St. Louis.
The mouse accessory olfactory system (AOS) is a specialized sensory pathway for detecting nonvolatile social odors, pheromones, and kairomones. The first neural circuit in the AOS pathway, called the accessory olfactory bulb (AOB), plays an important role in establishing sex-typical behaviors such as territorial aggression and mating. This small (<1 mm3) circuit possesses the capacity to distinguish unique behavioral states, such as sex, strain, and stress from chemosensory cues in the secretions and excretions of conspecifics. While the compact organization of this system presents unique opportunities for recording from large portions of the circuit simultaneously, investigation of sensory processing in the AOB remains challenging, largely due to its experimentally disadvantageous location in the brain. Here, we demonstrate a multi-stage dissection that removes the intact AOB inside a single hemisphere of the anterior mouse skull, leaving connections to both the peripheral vomeronasal sensory neurons (VSNs) and local neuronal circuitry intact. The procedure exposes the AOB surface to direct visual inspection, facilitating electrophysiological and optical recordings from AOB circuit elements in the absence of anesthetics. Upon inserting a thin cannula into the vomeronasal organ (VNO), which houses the VSNs, one can directly expose the periphery to social odors and pheromones while recording downstream activity in the AOB. This procedure enables controlled inquiries into AOS information processing, which can shed light on mechanisms linking pheromone exposure to changes in behavior.
Neuroscience, Issue 90, vomeronasal organ, accessory olfactory bulb, ex vivo, mouse, olfaction
Play Button
Transplantation of Olfactory Ensheathing Cells to Evaluate Functional Recovery after Peripheral Nerve Injury
Authors: Nicolas Guerout, Alexandre Paviot, Nicolas Bon-Mardion, Axel Honoré, Rais OBongo, Célia Duclos, Jean-Paul Marie.
Institutions: University of Rouen, Karolinska Institutet, Rouen University Hospital, Amiens University Hospital.
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.
Neuroscience, Issue 84, olfactory ensheathing cells, spinal cord injury, transplantation, larynx, recurrent laryngeal nerve, peripheral nerve injury, vocal cords
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Olfactory Behavioral Testing in the Adult Mouse
Authors: Rochelle M. Witt, Meghan M. Galligan, Jennifer R. Despinoy, Rosalind Segal.
Institutions: Dana Farber Cancer Institute, Harvard Medical School.
The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.
Neuroscience, Issue 23, olfaction, behavioral phenotyping, olfactory preference, olfactory sensitivity, sensory ability
Play Button
Guidelines for Elective Pediatric Fiberoptic Intubation
Authors: Roland N. Kaddoum, Zulfiqar Ahmed, Alan A. D'Augsutine, Maria M. Zestos.
Institutions: St. Jude Children's Research Hospital, Children's Hospital of Michigan, Children's Hospital of Michigan.
Fiberoptic intubation in pediatric patients is often required especially in difficult airways of syndromic patients i.e. Pierre Robin Syndrome. Small babies will desaturate very quickly if ventilation is interrupted mainly to high metabolic rate. We describe guidelines to perform a safe fiberoptic intubation while maintaining spontaneous breathing throughout the procedure. Steps requiring the use of propofol pump, fentanyl, glycopyrrolate, red rubber catheter, metal insuflation hook, afrin, lubricant and lidocaine spray are shown.
Medicine, Issue 47, Fiberoptic, Intubation, Pediatric, elective
Play Button
Isolating Nasal Olfactory Stem Cells from Rodents or Humans
Authors: Stéphane D. Girard, Arnaud Devéze, Emmanuel Nivet, Bruno Gepner, François S. Roman, François Féron.
Institutions: Aix Marseille University, Aix Marseille University, Aix Marseille University, The Salk Institute for Biological Studies, Aix Marseille University, Aix Marseille University.
The olfactory mucosa, located in the nasal cavity, is in charge of detecting odours. It is also the only nervous tissue that is exposed to the external environment and easily accessible in every living individual. As a result, this tissue is unique for anyone aiming to identify molecular anomalies in the pathological brain or isolate adult stem cells for cell therapy. Molecular abnormalities in brain diseases are often studied using nervous tissue samples collected post-mortem. However, this material has numerous limitations. In contrast, the olfactory mucosa is readily accessible and can be biopsied safely without any loss of sense of smell1. Accordingly, the olfactory mucosa provides an "open window" in the adult human through which one can study developmental (e.g. autism, schizophrenia)2-4 or neurodegenerative (e.g. Parkinson, Alzheimer) diseases4,5. Olfactory mucosa can be used for either comparative molecular studies4,6 or in vitro experiments on neurogenesis3,7. The olfactory epithelium is also a nervous tissue that produces new neurons every day to replace those that are damaged by pollution, bacterial of viral infections. This permanent neurogenesis is sustained by progenitors but also stem cells residing within both compartments of the mucosa, namely the neuroepithelium and the underlying lamina propria8-10. We recently developed a method to purify the adult stem cells located in the lamina propria and, after having demonstrated that they are closely related to bone marrow mesenchymal stem cells (BM-MSC), we named them olfactory ecto-mesenchymal stem cells (OE-MSC)11. Interestingly, when compared to BM-MSCs, OE-MSCs display a high proliferation rate, an elevated clonogenicity and an inclination to differentiate into neural cells. We took advantage of these characteristics to perform studies dedicated to unveil new candidate genes in schizophrenia and Parkinson's disease4. We and others have also shown that OE-MSCs are promising candidates for cell therapy, after a spinal cord trauma12,13, a cochlear damage14 or in an animal models of Parkinson's disease15 or amnesia16. In this study, we present methods to biopsy olfactory mucosa in rats and humans. After collection, the lamina propria is enzymatically separated from the epithelium and stem cells are purified using an enzymatic or a non-enzymatic method. Purified olfactory stem cells can then be either grown in large numbers and banked in liquid nitrogen or induced to form spheres or differentiated into neural cells. These stem cells can also be used for comparative omics (genomic, transcriptomic, epigenomic, proteomic) studies.
Neuroscience, Issue 54, stem cell, nose, brain, neuron, cell therapy, diagnosis, sphere
Play Button
Lentivirus-mediated Genetic Manipulation and Visualization of Olfactory Sensory Neurons in vivo
Authors: Benjamin Sadrian, Huaiyang Chen, Qizhi Gong.
Institutions: University of California, Davis.
Development of a precise olfactory circuit relies on accurate projection of olfactory sensory neuron (OSN) axons to their synaptic targets in the olfactory bulb (OB). The molecular mechanisms of OSN axon growth and targeting are not well understood. Manipulating gene expression and subsequent visualizing of single OSN axons and their terminal arbor morphology have thus far been challenging. To study gene function at the single cell level within a specified time frame, we developed a lentiviral based technique to manipulate gene expression in OSNs in vivo. Lentiviral particles are delivered to OSNs by microinjection into the olfactory epithelium (OE). Expression cassettes are then permanently integrated into the genome of transduced OSNs. Green fluorescent protein expression identifies infected OSNs and outlines their entire morphology, including the axon terminal arbor. Due to the short turnaround time between microinjection and reporter detection, gene function studies can be focused within a very narrow period of development. With this method, we have detected GFP expression within as few as three days and as long as three months following injection. We have achieved both over-expression and shRNA mediated knock-down by lentiviral microinjection. This method provides detailed morphologies of OSN cell bodies and axons at the single cell level in vivo, and thus allows characterization of candidate gene function during olfactory development.
Neuroscience, Issue 51, lentivirus, olfactory, sensory, neurons, genetics
Play Button
High-throughput Screening for Small-molecule Modulators of Inward Rectifier Potassium Channels
Authors: Rene Raphemot, C. David Weaver, Jerod S. Denton.
Institutions: Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Vanderbilt University School of Medicine.
Specific members of the inward rectifier potassium (Kir) channel family are postulated drug targets for a variety of disorders, including hypertension, atrial fibrillation, and pain1,2. For the most part, however, progress toward understanding their therapeutic potential or even basic physiological functions has been slowed by the lack of good pharmacological tools. Indeed, the molecular pharmacology of the inward rectifier family has lagged far behind that of the S4 superfamily of voltage-gated potassium (Kv) channels, for which a number of nanomolar-affinity and highly selective peptide toxin modulators have been discovered3. The bee venom toxin tertiapin and its derivatives are potent inhibitors of Kir1.1 and Kir3 channels4,5, but peptides are of limited use therapeutically as well as experimentally due to their antigenic properties and poor bioavailability, metabolic stability and tissue penetrance. The development of potent and selective small-molecule probes with improved pharmacological properties will be a key to fully understanding the physiology and therapeutic potential of Kir channels. The Molecular Libraries Probes Production Center Network (MLPCN) supported by the National Institutes of Health (NIH) Common Fund has created opportunities for academic scientists to initiate probe discovery campaigns for molecular targets and signaling pathways in need of better pharmacology6. The MLPCN provides researchers access to industry-scale screening centers and medicinal chemistry and informatics support to develop small-molecule probes to elucidate the function of genes and gene networks. The critical step in gaining entry to the MLPCN is the development of a robust target- or pathway-specific assay that is amenable for high-throughput screening (HTS). Here, we describe how to develop a fluorescence-based thallium (Tl+) flux assay of Kir channel function for high-throughput compound screening7,8,9,10.The assay is based on the permeability of the K+ channel pore to the K+ congener Tl+. A commercially available fluorescent Tl+ reporter dye is used to detect transmembrane flux of Tl+ through the pore. There are at least three commercially available dyes that are suitable for Tl+ flux assays: BTC, FluoZin-2, and FluxOR7,8. This protocol describes assay development using FluoZin-2. Although originally developed and marketed as a zinc indicator, FluoZin-2 exhibits a robust and dose-dependent increase in fluorescence emission upon Tl+ binding. We began working with FluoZin-2 before FluxOR was available7,8 and have continued to do so9,10. However, the steps in assay development are essentially identical for all three dyes, and users should determine which dye is most appropriate for their specific needs. We also discuss the assay's performance benchmarks that must be reached to be considered for entry to the MLPCN. Since Tl+ readily permeates most K+ channels, the assay should be adaptable to most K+ channel targets.
Biochemistry, Issue 71, Molecular Biology, Chemistry, Cellular Biology, Chemical Biology, Pharmacology, Molecular Pharmacology, Potassium channels, drug discovery, drug screening, high throughput, small molecules, fluorescence, thallium flux, checkerboard analysis, DMSO, cell lines, screen, assay, assay development
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
Authors: M. Rezaul Karim, Keita Endo, Adrian W Moore, Hiroaki Taniguchi.
Institutions: Doshisha University, RIKEN Brain Science Institute, RIKEN Brain Science Institute.
Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.
Neuroscience, Issue 87, Developmental biology, Drosophila, Whole mount immunolabeling, olfactory receptor neurons, antennae, sensory organ
Play Button
Micro-dissection of Rat Brain for RNA or Protein Extraction from Specific Brain Region
Authors: Kin Chiu, Wui Man Lau, Ho Tak Lau, Kwok-Fai So, Raymond Chuen-Chung Chang.
Institutions: The University of Hong Kong - HKU.
Micro-dissection of rat brain into various regions is extremely important for the study of different neurodegenerative diseases. This video demonstrates micro-dissection of four major brain regions include olfactory bulb, frontal cortex, striatum and hippocampus in fresh rat brain tissue. Useful tips for quick removal of respective regions to avoid RNA and protein degradation of the tissue are given.
Issue 7, Neuroscience, brain, dissection
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.