JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation.
PLoS ONE
PUBLISHED: 01-29-2013
The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n?=?45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5 AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation.
Authors: Silva Krause, Amy Brock, Donald E. Ingber.
Published: 10-04-2013
ABSTRACT
Herein we describe a protocol to deliver various reagents to the mouse mammary gland via intraductal injections. Localized drug delivery and knock-down of genes within the mammary epithelium has been difficult to achieve due to the lack of appropriate targeting molecules that are independent of developmental stages such as pregnancy and lactation. Herein, we describe a technique for localized delivery of reagents to the mammary gland at any stage in adulthood via intraductal injection into the nipples of mice. The injections can be performed on live mice, under anesthesia, and allow for a non-invasive and localized drug delivery to the mammary gland. Furthermore, the injections can be repeated over several months without damaging the nipple. Vital dyes such as Evans Blue are very helpful to learn the technique. Upon intraductal injection of the blue dye, the entire ductal tree becomes visible to the eye. Furthermore, fluorescently labeled reagents also allow for visualization and distribution within the mammary gland. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents, and small molecules.
16 Related JoVE Articles!
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
50324
Play Button
Intraductal Injection of LPS as a Mouse Model of Mastitis: Signaling Visualized via an NF-κB Reporter Transgenic
Authors: Whitney Barham, Taylor Sherrill, Linda Connelly, Timothy S. Blackwell, Fiona E. Yull.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, University of Hawaii at Hilo College of Pharmacy.
Animal models of human disease are necessary in order to rigorously study stages of disease progression and associated mechanisms, and ultimately, as pre-clinical models to test interventions. In these methods, we describe a technique in which lipopolysaccharide (LPS) is injected into the lactating mouse mammary gland via the nipple, effectively modeling mastitis, or inflammation, of the gland. This simulated infection results in increased nuclear factor kappa B (NF-κB) signaling, as visualized through bioluminescent imaging of an NF-κB luciferase reporter mouse1. Our ultimate goal in developing these methods was to study the inflammation associated with mastitis in the lactating gland, which often includes redness, swelling, and immune cell infiltration2,3. Therefore, we were keenly aware that incision or any type of wounding of the skin, the nipple, or the gland in order to introduce the LPS could not be utilized in our methods since the approach would likely confound the read-out of inflammation. We also desired a straight-forward method that did not require specially made hand-drawn pipettes or the use of micromanipulators to hold these specialized tools in place. Thus, we determined to use a commercially available insulin syringe and to inject the agent into the mammary duct of an intact nipple. This method was successful and allowed us to study the inflammation associated with LPS injection without any additional effects overlaid by the process of injection. In addition, this method also utilized an NF-κB luciferase reporter transgenic mouse and bioluminescent imaging technology to visually and quantitatively show increased NF-κB signaling within the LPS-injected gland4. These methods are of interest to researchers of many disciplines who wish to model disease within the lactating mammary gland, as ultimately, the technique described here could be utilized for injection of a number of substances, and is not limited to only LPS.
Medicine, Issue 67, mastitis, intraductal injection, NF-kappaB, reporter transgenic, LPS, bioluminescent imaging, lactation
4030
Play Button
Evaluation of Mammary Gland Development and Function in Mouse Models
Authors: Isabelle Plante, Michael K.G. Stewart, Dale W. Laird.
Institutions: University of Western Ontario.
The human mammary gland is composed of 15-20 lobes that secrete milk into a branching duct system opening at the nipple. Those lobes are themselves composed of a number of terminal duct lobular units made of secretory alveoli and converging ducts1. In mice, a similar architecture is observed at pregnancy in which ducts and alveoli are interspersed within the connective tissue stroma. The mouse mammary gland epithelium is a tree like system of ducts composed of two layers of cells, an inner layer of luminal cells surrounded by an outer layer of myoepithelial cells denoted by the confines of a basement membrane2. At birth, only a rudimental ductal tree is present, composed of a primary duct and 15-20 branches. Branch elongation and amplification start at the beginning of puberty, around 4 weeks old, under the influence of hormones3,4,5. At 10 weeks, most of the stroma is invaded by a complex system of ducts that will undergo cycles of branching and regression in each estrous cycle until pregnancy2. At the onset of pregnancy, a second phase of development begins, with the proliferation and differentiation of the epithelium to form grape-shaped milk secretory structures called alveoli6,7. Following parturition and throughout lactation, milk is produced by luminal secretory cells and stored within the lumen of alveoli. Oxytocin release, stimulated by a neural reflex induced by suckling of pups, induces synchronized contractions of the myoepithelial cells around the alveoli and along the ducts, allowing milk to be transported through the ducts to the nipple where it becomes available to the pups 8. Mammary gland development, differentiation and function are tightly orchestrated and require, not only interactions between the stroma and the epithelium, but also between myoepithelial and luminal cells within the epithelium9,10,11. Thereby, mutations in many genes implicated in these interactions may impair either ductal elongation during puberty or alveoli formation during early pregnancy, differentiation during late pregnancy and secretory activation leading to lactation12,13. In this article, we describe how to dissect mouse mammary glands and assess their development using whole mounts. We also demonstrate how to evaluate myoepithelial contractions and milk ejection using an ex-vivo oxytocin-based functional assay. The effect of a gene mutation on mammary gland development and function can thus be determined in situ by performing these two techniques in mutant and wild-type control mice.
Developmental Biology, Issue 53, mammary gland, whole mount, mouse model, mammary gland development, milk ejection
2828
Play Button
Reconstruction of 3-Dimensional Histology Volume and its Application to Study Mouse Mammary Glands
Authors: Rushin Shojaii, Stephanie Bacopulos, Wenyi Yang, Tigran Karavardanyan, Demetri Spyropoulos, Afshin Raouf, Anne Martel, Arun Seth.
Institutions: University of Toronto, Sunnybrook Research Institute, University of Toronto, Sunnybrook Research Institute, Medical University of South Carolina, University of Manitoba.
Histology volume reconstruction facilitates the study of 3D shape and volume change of an organ at the level of macrostructures made up of cells. It can also be used to investigate and validate novel techniques and algorithms in volumetric medical imaging and therapies. Creating 3D high-resolution atlases of different organs1,2,3 is another application of histology volume reconstruction. This provides a resource for investigating tissue structures and the spatial relationship between various cellular features. We present an image registration approach for histology volume reconstruction, which uses a set of optical blockface images. The reconstructed histology volume represents a reliable shape of the processed specimen with no propagated post-processing registration error. The Hematoxylin and Eosin (H&E) stained sections of two mouse mammary glands were registered to their corresponding blockface images using boundary points extracted from the edges of the specimen in histology and blockface images. The accuracy of the registration was visually evaluated. The alignment of the macrostructures of the mammary glands was also visually assessed at high resolution. This study delineates the different steps of this image registration pipeline, ranging from excision of the mammary gland through to 3D histology volume reconstruction. While 2D histology images reveal the structural differences between pairs of sections, 3D histology volume provides the ability to visualize the differences in shape and volume of the mammary glands.
Bioengineering, Issue 89, Histology Volume Reconstruction, Transgenic Mouse Model, Image Registration, Digital Histology, Image Processing, Mouse Mammary Gland
51325
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
51445
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
51464
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
51171
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
51839
Play Button
Milk Collection Methods for Mice and Reeves' Muntjac Deer
Authors: Kassandra Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, Candace Mathiason.
Institutions: Colorado State University.
Animal models are commonly used throughout research laboratories to accomplish what would normally be considered impractical in a pathogen’s native host. Milk collection from animals allows scientists the opportunity to study many aspects of reproduction including vertical transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate volumes of milk for these studies is a challenging task, especially from small animal models. Here we illustrate an inexpensive and facile method for milk collection in mice and Reeves’ muntjac deer that does not require specialized equipment or extensive training. This particular method requires two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in an appropriate container from either a Muntjac or mouse model. The mouse model also requires the use of a P-200 pipetman and corresponding pipette tips. While this method is low cost and relatively easy to perform, researchers should be advised that anesthetizing the animal is required for optimal milk collection.
Basic Protocol, Issue 89, mouse, milk, murine, muntjac, doe
51007
Play Button
Biochemical Titration of Glycogen In vitro
Authors: Joffrey Pelletier, Grégory Bellot, Jacques Pouysségur, Nathalie M. Mazure.
Institutions: University of Nice - Sophia Antipolis.
Glycogen is the main energetic polymer of glucose in vertebrate animals and plays a crucial role in whole body metabolism as well as in cellular metabolism. Many methods to detect glycogen already exist but only a few are quantitative. We describe here a method using the Abcam Glycogen assay kit, which is based on specific degradation of glycogen to glucose by glucoamylase. Glucose is then specifically oxidized to a product that reacts with the OxiRed probe to produce fluorescence. Titration is accurate, sensitive and can be achieved on cell extracts or tissue sections. However, in contrast to other techniques, it does not give information about the distribution of glycogen in the cell. As an example of this technique, we describe here the titration of glycogen in two cell lines, Chinese hamster lung fibroblast CCL39 and human colon carcinoma LS174, incubated in normoxia (21% O2) versus hypoxia (1% O2). We hypothesized that hypoxia is a signal that prepares cells to synthesize and store glycogen in order to survive1.
Basic Protocol, Issue 81, Glycogen, Glucoamylase, Fluorescence, Oxidation, Periodic Acid Shiff staining (PAS)
50465
Play Button
Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model
Authors: Stefanie Grafmüller, Pius Manser, Harald F. Krug, Peter Wick, Ursula von Mandach.
Institutions: University Hospital Zurich, EMPA Swiss Federal Laboratories for Materials Testing and Research, University of Bern.
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Biomedical Engineering, Issue 76, Medicine, Bioengineering, Anatomy, Physiology, Molecular Biology, Biochemistry, Biophysics, Pharmacology, Obstetrics, Nanotechnology, Placenta, Pharmacokinetics, Nanomedicine, humans, ex vivo perfusion, perfusion, biological barrier, xenobiotics, nanomaterials, clinical model
50401
Play Button
Changes in Mammary Gland Morphology and Breast Cancer Risk in Rats
Authors: Sonia de Assis, Anni Warri, M. Idalia Cruz, Leena Hilakivi-Clarke.
Institutions: Georgetown University, University of Turku Medical Faculty.
Studies in rodent models of breast cancer show that exposures to dietary/hormonal factors during the in utero and pubertal periods, when the mammary gland undergoes extensive modeling and re-modeling, alter susceptibility to carcinogen-induced mammary tumors. Similar findings have been described in humans: for example, high birthweight increases later risk of developing breast cancer, and dietary intake of soy during childhood decreases breast cancer risk. It is thought that these prenatal and postnatal dietary modifications induce persistent morphological changes in the mammary gland that in turn modify breast cancer risk later in life. These morphological changes likely reflect epigenetic modifications, such as changes in DNA methylation, histones and miRNA expression that then affect gene transcription . In this article we describe how changes in mammary gland morphology can predict mammary cancer risk in rats. Our protocol specifically describes how to dissect and remove the rat abdominal mammary gland and how to prepare mammary gland whole mounts. It also describes how to analyze mammary gland morphology according to three end-points (number of terminal end buds, epithelial elongation and differentiation) and to use the data to predict risk of developing mammary cancer.
Medicine, Issue 44, mammary gland morphology, terminal end buds, mammary cancer, maternal dietary exposures, pregnancy, prepubertal dietay exposures
2260
Play Button
Isolation of Mouse Salivary Gland Stem Cells
Authors: Sarah Pringle, Lalitha S. Y. Nanduri, van der Zwaag Marianne, van Os Ronald, Rob P. Coppes.
Institutions: University Medical Center Groningen, University of Groningen, University Medical Center Groningen, University of Groningen.
Mature salivary glands of both human and mouse origin comprise a minimum of five cell types, each of which facilitates the production and excretion of saliva into the oral cavity. Serous and mucous acinar cells are the protein and mucous producing factories of the gland respectively, and represent the origin of saliva production. Once synthesised, the various enzymatic and other proteinaceous components of saliva are secreted through a series of ductal cells bearing epithelial-type morphology, until the eventual expulsion of the saliva through one major duct into the cavity of the mouth. The composition of saliva is also modified by the ductal cells during this process. In the manifestation of diseases such as Sjögren's syndrome, and in some clinical situations such as radiotherapy treatment for head and neck cancers, saliva production by the glands is dramatically reduced 1,2. The resulting xerostomia, a subjective feeling of dry mouth, affects not only the ability of the patient to swallow and speak, but also encourages the development of dental caries and can be socially debilitating for the sufferer. The restoration of saliva production in the above-mentioned clinical conditions therefore represents an unmet clinical need, and as such several studies have demonstrated the regenerative capacity of the salivary glands 3-5. Further to the isolation of stem cell-like populations of cells from various tissues within the mouse and human bodies 6-8, we have shown using the described method that stem cells isolated from mouse salivary glands can be used to rescue saliva production in irradiated salivary glands 9,10. This discovery paves the way for the development of stem cell-based therapies for the treatment of xerostomic conditions in humans, and also for the exploration of the salivary gland as a microenvironment containing cells with multipotent self-renewing capabilities.
Stem Cell Biology, Issue 48, Murine salivary glands, stem cells, isolation, tissue culture.
2484
Play Button
Mammary Epithelial Transplant Procedure
Authors: Karen A. Dunphy, Luwei Tao, D. Joseph Jerry.
Institutions: University of Massachussetts, Pioneer Valley Life Sciences institute, University of Massachussetts.
This article describes and compares the fat pad clearance procedure developed by DeOme KB et al.1 and the sparing procedure developed by Brill B et al.2, followed by the mammary epithelial transplant procedure. The mammary transplant procedure is widely used by mammary biologists because it takes advantage of the fact that significant development of the mammary epithelium doesn't occur until after puberty. At 3 weeks of age, growth of the mammary epithelial tree is confined to the vicinity of the nipple and the fat pad is largely devoid of mammary epithelium, but by 7 weeks of age the epithelial ductal tree extends throughout the entire fat pad. Therefore, if this small portion of the fat pad containing epithelium, the region between the nipple and the lymph node, is removed at 3 weeks of age, the endogenous epithelium will never populate the mammary fat pad and the fat pad is described as "cleared". At this time, mammary epithelium from another source can be transplanted in the cleared fat pad where it has the potential to extend mammary ductal trees through out the fat pad. This procedure has been utilized in many experimental models including the examination of tumor phenotype in transgenic mammary epithelial tissue without the confounding effects of genotype on the entire animal3, in the identification of mammary stem cells by transplanting cells in limited dilution4,5, determining if hyperplastic nodules proceed to mammary tumors6, and to assess the effect of prior hormone exposure on the behavior of the mammary epithelium7,8. Three week old host mice are anesthetized, cleaned and restrained on a surgical stage. A mid-sagittal incision is made through the skin, but not the peritoneum, extending from the pubis to the sternum. Oblique cuts are made through the skin from the mid-sagittal incision across the pelvis toward each leg. The skin is pulled away from the peritoneum to expose the 4th inguinal mammary gland. The fat pad is cleared by removing the fat pad tissue anterior to the lymph node. Epithelium fragments or epithelial cells are transplanted into the remaining cleared fat pad and the mouse is closed.
Cellular Biology, Issue 40, transplantation, mammary, epithelium, cleared fat pad
1849
Play Button
Mouse Mammary Epithelial Cells form Mammospheres During Lactogenic Differentiation
Authors: Bethanie Morrison, Mary Lou Cutler.
Institutions: F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD.
A phenotypic measure commonly used to determine the degree of lactogenic differentiation in mouse mammary epithelial cell cultures is the formation of dome shaped cell structures referred to as mammospheres 1. The HC11 cell line has been employed as a model system for the study of regulation of mammary lactogenic differentiation both in vitro and in vivo 2. The HC11 cells differentiate and synthesize milk proteins in response to treatment with lactogenic hormones. Following the growth of HC11 mouse mammary epithelial cells to confluence, lactogenic differentiation was induced by the addition of a combination of lactogenic hormones including dexamethasone, insulin, and prolactin, referred to as DIP. The HC11 cells induced to differentiate were photographed at times up to 120 hours post induction of differentiation and the number of mammospheres that appeared in each culture was enumerated. The size of the individual mammospheres correlates with the degree of differentiation and this is depicted in the images of the differentiating cells.
Cellular Biology, Issue 32, Mammospheres, HC11, lactogenic differentiation, mammary
1265
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.