JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Molecular characterization of Cyclospora-like organisms from golden snub-nosed monkeys in Qinling Mountain in Shaanxi province, northwestern China.
PUBLISHED: 02-01-2013
Cyclospora spp. have been identified as one of the most important intestinal pathogens causing protracted diarrhea in animals and human beings. To determine the Cyclospora species in the non-human primate Rhinopithecus roxellanae, a total of 71 fecal samples from 19 endangered snub-nosed monkeys in Shaanxi province were collected and examined using Sheaters sugar flotation technique and by sequencing the fragments of 18S rDNA. Only two Cyclospora isolates from 2 golden snub-nosed monkeys (R. roxellanae) were obtained and identified between July 2011 and August of 2012. The sequences of the 18S rDNA for the two Cyclospora isolates were 477 bp, with no nucleotide variation between them. Phylogenetic analysis based on the 18S rDNA sequences revealed that the two Cyclospora isolates were posited into the clade Cyclospora spp. and sistered to C. colobi. These results first showed that Cyclospora infection occurred in R. roxellanae in hot and rainy weather, which would provide useful information for further understanding the molecular epidemiology of Cyclospora spp. and the control of Cyclospora infection in non-human primates as well as in human beings.
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Published: 11-05-2014
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
24 Related JoVE Articles!
Play Button
Forward Genetic Approaches in Chlamydia trachomatis
Authors: Bidong D. Nguyen, Raphael H. Valdivia.
Institutions: Duke University Medical Center.
Chlamydia trachomatis, the etiological agent of sexually transmitted diseases and ocular infections, remains poorly characterized due to its intractability to experimental transformation with recombinant DNA. We developed an approach to perform genetic analysis in C. trachomatis despite the lack of molecular genetic tools. Our method involves: i.) chemical mutagenesis to rapidly generate comprehensive libraries of genetically-defined mutants with distinct phenotypes; ii.) whole-genome sequencing (WGS) to map the underlying genetic lesions and to find associations between mutated gene(s) and a common phenotype; iii.) generation of recombinant strains through co-infection of mammalian cells with mutant and wild type bacteria. Accordingly, we were able to establish causal relationships between genotypes and phenotypes. The coupling of chemically-induced gene variation and WGS to establish correlative genotype–phenotype associations should be broadly applicable to the large list of medically and environmentally important microorganisms currently intractable to genetic analysis.
Immunology, Issue 80, genetics, chemical mutagenesis, whole genome sequencing
Play Button
Technique for Studying Arthropod and Microbial Communities within Tree Tissues
Authors: Nicholas C Aflitto, Richard W Hofstetter, Reagan McGuire, David D Dunn, Kristen A Potter.
Institutions: Northern Arizona University, Acoustic Ecology Institute.
Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a ‘phloem sandwich’ and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories.
Environmental Sciences, Issue 93, phloem sandwich, pine, bark beetles, mites, acoustics, phloem
Play Button
An Orthotopic Murine Model of Human Prostate Cancer Metastasis
Authors: Janet Pavese, Irene M. Ogden, Raymond C. Bergan.
Institutions: Northwestern University, Northwestern University, Northwestern University.
Our laboratory has developed a novel orthotopic implantation model of human prostate cancer (PCa). As PCa death is not due to the primary tumor, but rather the formation of distinct metastasis, the ability to effectively model this progression pre-clinically is of high value. In this model, cells are directly implanted into the ventral lobe of the prostate in Balb/c athymic mice, and allowed to progress for 4-6 weeks. At experiment termination, several distinct endpoints can be measured, such as size and molecular characterization of the primary tumor, the presence and quantification of circulating tumor cells in the blood and bone marrow, and formation of metastasis to the lung. In addition to a variety of endpoints, this model provides a picture of a cells ability to invade and escape the primary organ, enter and survive in the circulatory system, and implant and grow in a secondary site. This model has been used effectively to measure metastatic response to both changes in protein expression as well as to response to small molecule therapeutics, in a short turnaround time.
Medicine, Issue 79, Urogenital System, Male Urogenital Diseases, Surgical Procedures, Operative, Life Sciences (General), Prostate Cancer, Metastasis, Mouse Model, Drug Discovery, Molecular Biology
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
Play Button
Agroinfiltration and PVX Agroinfection in Potato and Nicotiana benthamiana
Authors: Juan Du, Hendrik Rietman, Vivianne G. A. A. Vleeshouwers.
Institutions: Wageningen University, Huazhong Agricultural University.
Agroinfiltration and PVX agroinfection are two efficient transient expression assays for functional analysis of candidate genes in plants. The most commonly used agent for agroinfiltration is Agrobacterium tumefaciens, a pathogen of many dicot plant species. This implies that agroinfiltration can be applied to many plant species. Here, we present our protocols and expected results when applying these methods to the potato (Solanum tuberosum), its related wild tuber-bearing Solanum species (Solanum section Petota) and the model plant Nicotiana benthamiana. In addition to functional analysis of single genes, such as resistance (R) or avirulence (Avr) genes, the agroinfiltration assay is very suitable for recapitulating the R-AVR interactions associated with specific host pathogen interactions by simply delivering R and Avr transgenes into the same cell. However, some plant genotypes can raise nonspecific defense responses to Agrobacterium, as we observed for example for several potato genotypes. Compared to agroinfiltration, detection of AVR activity with PVX agroinfection is more sensitive, more high-throughput in functional screens and less sensitive to nonspecific defense responses to Agrobacterium. However, nonspecific defense to PVX can occur and there is a risk to miss responses due to virus-induced extreme resistance. Despite such limitations, in our experience, agroinfiltration and PVX agroinfection are both suitable and complementary assays that can be used simultaneously to confirm each other's results.
Plant Biology, Issue 83, Genetics, Bioengineering, Plants, Genetically Modified, DNA, Plant Immunity, Plant Diseases, Genes, Genome, Plant Pathology, Effectoromics, Agroinfiltration, PVX agroinfection, potato, Nicotiana benthamiana, high-throughput, functional genomics
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Mouse Fetal Liver Culture System to Dissect Target Gene Functions at the Early and Late Stages of Terminal Erythropoiesis
Authors: Baobing Zhao, Yang Mei, Jing Yang, Peng Ji.
Institutions: Northwestern University.
Erythropoiesis involves a dynamic process that begins with committed erythroid burst forming units (BFU-Es) followed by rapidly dividing erythroid colony forming units (CFU-Es). After CFU-Es, cells are morphologically recognizable and generally termed terminal erythroblasts. One of the challenges for the study of terminal erythropoiesis is the lack of experimental approaches to dissect gene functions in a chronological manner. In this protocol, we describe a unique strategy to determine gene functions in the early and late stages of terminal erythropoiesis. In this system, mouse fetal liver TER119 (mature erythroid cell marker) negative erythroblasts were purified and transduced with exogenous expression of cDNAs or small hairpin RNAs (shRNAs) for the genes of interest. The cells were subsequently cultured in medium containing growth factors other than erythropoietin (Epo) to maintain their progenitor stage for 12 hr while allowing the exogenous cDNAs or shRNAs to express. The cells were changed to Epo medium after 12 hr to induce cell differentiation and proliferation while the exogenous genetic materials were already expressed. This protocol facilitates analysis of gene functions in the early stage of terminal erythropoiesis. To study late stage terminal erythropoiesis, cells were immediately cultured in Epo medium after transduction. In this way, the cells were already differentiated to the late stage of terminal erythropoiesis when the transduced genetic materials were expressed. We recommend a general application of this strategy that would help understand detailed gene functions in different stages of terminal erythropoiesis.
Immunology, Issue 91, erythropoiesis, cell culture, erythroblast, differentiation, erythropoietin, fetal liver, enucleation
Play Button
Synthesis and Characterization of Functionalized Metal-organic Frameworks
Authors: Olga Karagiaridi, Wojciech Bury, Amy A. Sarjeant, Joseph T. Hupp, Omar K. Farha.
Institutions: Northwestern University, Warsaw University of Technology, King Abdulaziz University.
Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy.
Chemistry, Issue 91, Metal-organic frameworks, porous coordination polymers, supercritical CO2 activation, crystallography, solvothermal, sorption, solvent-assisted linker exchange
Play Button
Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture
Authors: Graham Bailes, Margaret Lind, Andrew Ely, Marianne Powell, Jennifer Moore-Kucera, Carol Miles, Debra Inglis, Marion Brodhagen.
Institutions: Western Washington University, Washington State University Northwestern Research and Extension Center, Texas Tech University.
Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.
Microbiology, Issue 75, Plant Biology, Environmental Sciences, Agricultural Sciences, Soil Science, Molecular Biology, Cellular Biology, Genetics, Mycology, Fungi, Bacteria, Microorganisms, Biodegradable plastic, biodegradable mulch, compostable plastic, compostable mulch, plastic degradation, composting, breakdown, soil, 18S ribosomal DNA, isolation, culture
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Fluorescent in situ Hybridization on Mitotic Chromosomes of Mosquitoes
Authors: Vladimir A. Timoshevskiy, Atashi Sharma, Igor V. Sharakhov, Maria V. Sharakhova.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes 1. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions 2,3 . Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes 4, 5, 6. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti 7 and Cx. quinquefasciatus 8, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates 9. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti 10, the accumulation of multiple chromosomal rearrangements in cell line chromosomes 11 makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol 12 is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and Cx. quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups.
Immunology, Issue 67, Genetics, Molecular Biology, Entomology, Infectious Disease, imaginal discs, mitotic chromosomes, genome mapping, FISH, fluorescent in situ hybridization, mosquitoes, Anopheles, Aedes, Culex
Play Button
Diagnosis of Ecto- and Endoparasites in Laboratory Rats and Mice
Authors: Christina M. Parkinson, Alexandra O'Brien, Theresa M. Albers, Meredith A. Simon, Charles B. Clifford, Kathleen R. Pritchett-Corning.
Institutions: Charles River, Charles River, University of Washington.
Internal and external parasites remain a significant concern in laboratory rodent facilities, and many research facilities harbor some parasitized animals. Before embarking on an examination of animals for parasites, two things should be considered. One: what use will be made of the information collected, and two: which test is the most appropriate. Knowing that animals are parasitized may be something that the facility accepts, but there is often a need to treat animals and then to determine the efficacy of treatment. Parasites may be detected in animals through various techniques, including samples taken from live or euthanized animals. Historically, the tests with the greatest diagnostic sensitivity required euthanasia of the animal, although PCR has allowed high-sensitivity testing for several types of parasite. This article demonstrates procedures for the detection of endo- and ectoparasites in mice and rats. The same procedures are applicable to other rodents, although the species of parasites found will differ.
Immunology, Issue 55, rat, mouse, endoparasite, ectoparasite, diagnostics, mites, pinworm, helminths, protozoa, health monitoring
Play Button
Particle Agglutination Method for Poliovirus Identification
Authors: Minetaro Arita, Souji Masujima, Takaji Wakita, Hiroyuki Shimizu.
Institutions: National Institute of Infectious Diseases, Fujirebio Inc..
In the Global Polio Eradication Initiative, laboratory diagnosis plays a critical role by isolating and identifying PV from the stool samples of acute flaccid paralysis (AFP) cases. In the World Health Organization (WHO) Global Polio Laboratory Network, PV isolation and identification are currently being performed by using cell culture system and real-time RT-PCR, respectively. In the post-eradication era of PV, simple and rapid identification procedures would be helpful for rapid confirmation of polio cases at the national laboratories. In the present study, we will show the procedure of novel PA assay developed for PV identification. This PA assay utilizes interaction of PV receptor (PVR) molecule and virion that is specific and uniform affinity to all the serotypes of PV. The procedure is simple (one step procedure in reaction plates) and rapid (results can be obtained within 2 h of reaction), and the result is visually observed (observation of agglutination of gelatin particles).
Immunology, Issue 50, Poliovirus, identification, particle agglutination, virus receptor
Play Button
In vivo Imaging of Transgenic Leishmania Parasites in a Live Host
Authors: Colin J. Thalhofer, Joel W. Graff, Laurie Love-Homan, Suzanne M. Hickerson, Noah Craft, Stephen M. Beverley, Mary E. Wilson.
Institutions: University of Iowa, and the VA Medical Center, University of Iowa, and the VA Medical Center, University of Iowa, Washington University School of Medicine, Harbor-UCLA Medical Center, Hanley-Hardison Research Center, Iowa City VA Medical Center, University of Iowa.
Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection. Parasite loads are then measured either by microscopy, limiting dilution assay, or qPCR amplification of parasite DNA. The in vivo imaging system (IVIS) has an integrated software package that allows the detection of a bioluminescent signal associated with cells in living organisms. Both to minimize animal usage and to follow infection longitudinally in individuals, in vivo models for imaging Leishmania spp. causing VL or CL were established. Parasites were engineered to express luciferase, and these were introduced into mice either intradermally or intravenously. Quantitative measurements of the luciferase driving bioluminescence of the transgenic Leishmania parasites within the mouse were made using IVIS. Individual mice can be imaged multiple times during longitudinal studies, allowing us to assess the inter-animal variation in the initial experimental parasite inocula, and to assess the multiplication of parasites in mouse tissues. Parasites are detected with high sensitivity in cutaneous locations. Although it is very likely that the signal (photons/second/parasite) is lower in deeper visceral organs than the skin, but quantitative comparisons of signals in superficial versus deep sites have not been done. It is possible that parasite numbers between body sites cannot be directly compared, although parasite loads in the same tissues can be compared between mice. Examples of one visceralizing species (L. infantum chagasi) and one species causing cutaneous leishmaniasis (L. mexicana) are shown. The IVIS procedure can be used for monitoring and analyzing small animal models of a wide variety of Leishmania species causing the different forms of human leishmaniasis.
Microbiology, Issue 41, IVIS, Leishmania, in vivo imaging, parasite, transgenic, bioluminescence, luciferase, cutaneous leishmaniasis, visceral leishmaniasis
Play Button
An Allelotyping PCR for Identifying Salmonella enterica serovars Enteritidis, Hadar, Heidelberg, and Typhimurium
Authors: John J. Maurer, Margie D. Lee, Ying Cheng, Adriana Pedroso.
Institutions: University of Georgia.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype. We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium. Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.
Immunology, Issue 53, PCR, Salmonella, multiplex, Serovar
Play Button
One-day Workflow Scheme for Bacterial Pathogen Detection and Antimicrobial Resistance Testing from Blood Cultures
Authors: Wendy L.J. Hansen, Judith Beuving, Annelies Verbon, Petra. F.G. Wolffs.
Institutions: Maastricht University Medical Center, Erasmus Medical Center.
Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock1. Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours2, 4. The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes5. Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h. Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods6. This assay was based on a study in which PCR was used to measure the growth of bacteria7. Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.
Immunology, Issue 65, Infection, Medicine, Microbiology, Bacteria, real-time PCR, probes, pathogen detection, blood culture, 16S rDNA gene, antibiotic resistance, antibiotic susceptibility testing
Play Button
Cutaneous Leishmaniasis in the Dorsal Skin of Hamsters: a Useful Model for the Screening of Antileishmanial Drugs
Authors: Sara M. Robledo, Lina M. Carrillo, Alejandro Daza, Adriana M. Restrepo, Diana L. Muñoz, Jairo Tobón, Javier D. Murillo, Anderson López, Carolina Ríos, Carol V. Mesa, Yulieth A. Upegui, Alejandro Valencia-Tobón, Karina Mondragón-Shem, Berardo RodrÍguez, Iván D. Vélez.
Institutions: University of Antioquia, University of Antioquia.
Traditionally, hamsters are experimentally inoculated in the snout or the footpad. However in these sites an ulcer not always occurs, measurement of lesion size is a hard procedure and animals show difficulty to eat, breathe and move because of the lesion. In order to optimize the hamster model for cutaneous leishmaniasis, young adult male and female golden hamsters (Mesocricetus auratus) were injected intradermally at the dorsal skin with 1 to 1.5 x l07 promastigotes of Leishmania species and progression of subsequent lesions were evaluated for up to 16 weeks post infection. The golden hamster was selected because it is considered the adequate bio-model to evaluate drugs against Leishmania as they are susceptible to infection by different species. Cutaneous infection of hamsters results in chronic but controlled lesions, and a clinical evolution with signs similar to those observed in humans. Therefore, the establishment of the extent of infection by measuring the size of the lesion according to the area of indurations and ulcers is feasible. This approach has proven its versatility and easy management during inoculation, follow up and characterization of typical lesions (ulcers), application of treatments through different ways and obtaining of clinical samples after different treatments. By using this method the quality of animal life regarding locomotion, search for food and water, play and social activities is also preserved.
Immunology, Issue 62, Cutaneous leishmaniasis, hamster, Leishmania, antileishmanial drugs
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
Play Button
Determining Soil-transmitted Helminth Infection Status and Physical Fitness of School-aged Children
Authors: Peiling Yap, Thomas Fürst, Ivan Müller, Susi Kriemler, Jürg Utzinger, Peter Steinmann.
Institutions: Swiss Tropical and Public Health Institute, Basel, Switzerland, University of Basel, Basel, Switzerland.
Soil-transmitted helminth (STH) infections are common. Indeed, more than 1 billion people are affected, mainly in the developing world where poverty prevails and hygiene behavior, water supply, and sanitation are often deficient1,2. Ascaris lumbricoides, Trichuris trichiura, and the two hookworm species, Ancylostoma duodenale and Necator americanus, are the most prevalent STHs3. The estimated global burden due to hookworm disease, ascariasis, and trichuriasis is 22.1, 10.5, and 6.4 million disability-adjusted life years (DALYs), respectively4. Furthermore, an estimated 30-100 million people are infected with Strongyloides stercoralis, the most neglected STH species of global significance which arguably also causes a considerable public health impact5,6. Multiple-species infections (i.e., different STHs harbored in a single individual) are common, and infections have been linked to lowered productivity and thus economic outlook of developing countries1,3. For the diagnosis of common STHs, the World Health Organization (WHO) recommends the Kato-Katz technique7,8, which is a relatively straightforward method for determining the prevalence and intensity of such infections. It facilitates the detection of parasite eggs that infected subjects pass in their feces. With regard to the diagnosis of S.stercoralis, there is currently no simple and accurate tool available. The Baermann technique is the most widely employed method for its diagnosis. The principle behind the Baermann technique is that active S.stercoralis larvae migrate out of an illuminated fresh fecal sample as the larvae are phototactic9. It requires less sophisticated laboratory materials and is less time consuming than culture and immunological methods5. Morbidities associated with STH infections range from acute but common symptoms, such as abdominal pain, diarrhea, and pruritus, to chronic symptoms, such as anemia, under- and malnutrition, and cognitive impairment10. Since the symptoms are generally unspecific and subtle, they often go unnoticed, are considered a normal condition by affected individuals, or are treated as symptoms of other diseases that might be more common in a given setting. Hence, it is conceivable that the true burden of STH infections is underestimated by assessment tools relying on self-declared signs and symptoms as is usually the case in population-based surveys. In the late 1980s and early 1990s, Stephenson and colleagues highlighted the possibility of STH infections lowering the physical fitness of boys aged 6-12 years11,12. This line of scientific inquiry gained new momentum recently13,14,15. The 20-meter (m) shuttle run test was developed and validated by Léger et al.16 and is used worldwide to measure the aerobic fitness of children17. The test is easy to standardize and can be performed wherever a 20-m long and flat running course and an audio source are available, making its use attractive in resource-constrained settings13. To facilitate and standardize attempts at assessing whether STH infections have an effect on the physical fitness of school-aged children, we present methodologies that diagnose STH infections or measure physical fitness that are simple to execute and yet, provide accurate and reproducible outcomes. This will help to generate new evidence regarding the health impact of STH infections.
Infection, Issue 66, Immunology, Medicine, Infectious Diseases, Soil-transmitted helminths, physical fitness, Kato-Katz technique, Baermann technique, 20-meter shuttle run test, children
Play Button
A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System
Authors: Ariella Shikanov, Min Xu, Teresa K. Woodruff, Lonnie D. Shea.
Institutions: Northwestern University, Northwestern University, Feinberg School of Medicine, Northwestern University, Northwestern University, Northwestern University.
The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly critical for clinical translation in order to support the greater than 106-fold increase in volume that human follicles normally undergo in vivo .
Bioengineering, Issue 49, Ovarian follicle, fibrin-alginate, 3D culture system, dynamic environment
Play Button
Characterizing Herbivore Resistance Mechanisms: Spittlebugs on Brachiaria spp. as an Example
Authors: Soroush Parsa, Guillermo Sotelo, Cesar Cardona.
Institutions: CIAT.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore's growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3. We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.
Plant Biology, Issue 52, host plant resistance, antibiosis, antixenosis, tolerance, Brachiaria, spittlebugs
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.