JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The relationship between Type D personality, affective symptoms and hemoglobin levels in chronic heart failure.
PLoS ONE
PUBLISHED: 02-03-2013
Anemia is associated with poor prognosis in heart failure (HF) patients. Contributors to the risk of anemia in HF include hemodilution, renal dysfunction and inflammation. Hemoglobin levels may also be negatively affected by alterations in stress regulatory systems. Therefore, psychological distress characterized by such alterations may adversely affect hemoglobin in HF. The association between hemoglobin and Type D personality and affective symptomatology in the context of HF is poorly understood.
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Published: 07-18-2014
ABSTRACT
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
23 Related JoVE Articles!
Play Button
Dried Blood Spot Collection of Health Biomarkers to Maximize Participation in Population Studies
Authors: Michael W. Ostler, James H. Porter, Orfeu M. Buxton.
Institutions: Harvard School of Public Health, Brigham and Women's Hospital, Harvard Medical School, Pennsylvania State University.
Biomarkers are directly-measured biological indicators of disease, health, exposures, or other biological information. In population and social sciences, biomarkers need to be easy to obtain, transport, and analyze. Dried Blood Spots meet this need, and can be collected in the field with high response rates. These elements are particularly important in longitudinal study designs including interventions where attrition is critical to avoid, and high response rates improve the interpretation of results. Dried Blood Spot sample collection is simple, quick, relatively painless, less invasive then venipuncture, and requires minimal field storage requirements (i.e. samples do not need to be immediately frozen and can be stored for a long period of time in a stable freezer environment before assay). The samples can be analyzed for a variety of different analytes, including cholesterol, C-reactive protein, glycosylated hemoglobin, numerous cytokines, and other analytes, as well as provide genetic material. DBS collection is depicted as employed in several recent studies.
Medicine, Issue 83, dried blood spots (DBS), Biomarkers, cardiometabolic risk, Inflammation, standard precautions, blood collection
50973
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
Methods for Quantitative Detection of Antibody-induced Complement Activation on Red Blood Cells
Authors: Elisabeth M. Meulenbroek, Diana Wouters, Sacha Zeerleder.
Institutions: University of Amsterdam, University of Amsterdam.
Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation.
Immunology, Issue 83, Complement, red blood cells, auto-immune hemolytic anemia, hemolytic assay, FACS, antibodies, C1-inhibitor
51161
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Implantation of Total Artificial Heart in Congenital Heart Disease
Authors: Iki Adachi, David S. L. Morales.
Institutions: Texas Children's Hospital, Baylor College of Medicine, The University of Cincinnati College of Medicine.
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
Medicine, Issue 89, total artificial heart, transposition of the great arteries, congenital heart disease, aortic insufficiency, ventricular outflow tract obstruction, conduit obstruction, heart failure
51569
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
Authors: Nick Reed, James Murphy, Talia Dick, Katie Mah, Melissa Paniccia, Lee Verweel, Danielle Dobney, Michelle Keightley.
Institutions: Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, University of Toronto.
Concussion is one of the most commonly reported injuries amongst children and youth involved in sport participation. Following a concussion, youth can experience a range of short and long term neurobehavioral symptoms (somatic, cognitive and emotional/behavioral) that can have a significant impact on one’s participation in daily activities and pursuits of interest (e.g., school, sports, work, family/social life, etc.). Despite this, there remains a paucity in clinically driven research aimed specifically at exploring concussion within the youth sport population, and more specifically, multi-modal approaches to measuring recovery. This article provides an overview of a novel and multi-modal approach to measuring recovery amongst youth athletes following concussion. The presented approach involves the use of both pre-injury/baseline testing and post-injury/follow-up testing to assess performance across a wide variety of domains (post-concussion symptoms, cognition, balance, strength, agility/motor skills and resting state heart rate variability). The goal of this research is to gain a more objective and accurate understanding of recovery following concussion in youth athletes (ages 10-18 years). Findings from this research can help to inform the development and use of improved approaches to concussion management and rehabilitation specific to the youth sport community.
Medicine, Issue 91, concussion, children, youth, athletes, assessment, management, rehabilitation
51892
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
51905
Play Button
Exploring Cognitive Functions in Babies, Children & Adults with Near Infrared Spectroscopy
Authors: Mark H. Shalinsky, Iouila Kovelman, Melody S. Berens, Laura-Ann Petitto.
Institutions: University of Michigan, Ann Arbor, University of Toronto Scarborough.
An explosion of functional Near Infrared Spectroscopy (fNIRS) studies investigating cortical activation in relation to higher cognitive processes, such as language1,2,3,4,5,6,7,8,9,10, memory11, and attention12 is underway worldwide involving adults, children and infants 3,4,13,14,15,16,17,18,19 with typical and atypical cognition20,21,22. The contemporary challenge of using fNIRS for cognitive neuroscience is to achieve systematic analyses of data such that they are universally interpretable23,24,25,26, and thus may advance important scientific questions about the functional organization and neural systems underlying human higher cognition. Existing neuroimaging technologies have either less robust temporal or spatial resolution. Event Related Potentials and Magneto Encephalography (ERP and MEG) have excellent temporal resolution, whereas Positron Emission Tomography and functional Magnetic Resonance Imaging (PET and fMRI) have better spatial resolution. Using non-ionizing wavelengths of light in the near-infrared range (700-1000 nm), where oxy-hemoglobin is preferentially absorbed by 680 nm and deoxy-hemoglobin is preferentially absorbed by 830 nm (e.g., indeed, the very wavelengths hardwired into the fNIRS Hitachi ETG-400 system illustrated here), fNIRS is well suited for studies of higher cognition because it has both good temporal resolution (~5s) without the use of radiation and good spatial resolution (~4 cm depth), and does not require participants to be in an enclosed structure27,28. Participants cortical activity can be assessed while comfortably seated in an ordinary chair (adults, children) or even seated in mom s lap (infants). Notably, NIRS is uniquely portable (the size of a desktop computer), virtually silent, and can tolerate a participants subtle movement. This is particularly outstanding for the neural study of human language, which necessarily has as one of its key components the movement of the mouth in speech production or the hands in sign language. The way in which the hemodynamic response is localized is by an array of laser emitters and detectors. Emitters emit a known intensity of non-ionizing light while detectors detect the amount reflected back from the cortical surface. The closer together the optodes, the greater the spatial resolution, whereas the further apart the optodes, the greater depth of penetration. For the fNIRS Hitachi ETG-4000 system optimal penetration / resolution the optode array is set to 2cm. Our goal is to demonstrate our method of acquiring and analyzing fNIRS data to help standardize the field and enable different fNIRS labs worldwide to have a common background.
Neuroscience, Issue 29, infant, child, Near Infrared Spectroscopy, fNIRS, optical tomography, cognitive neuroscience, psychology, brain, developmental cognitive neuroscience, analysis
1268
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
50643
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Acute Myocardial Infarction in Rats
Authors: Yewen Wu, Xing Yin, Cori Wijaya, Ming-He Huang, Bradley K. McConnell.
Institutions: University of Texas Medical Branch, University of Houston (UH), Texas Medical Center.
With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial infarction (AMI). This model is also referred to as an acute ischemic cardiomyopathy or ischemia followed by reperfusion (IR); which is induced by an acute 30-minute period of ischemia by ligation of the left anterior descending artery (LAD) followed by reperfusion of the tissue by releasing the LAD ligation (Vasilyev and McConnell). This protocol will focus on assessment of the infarct size and the area-at-risk (AAR) by Evan's blue dye and triphenyl tetrazolium chloride (TTC) following 4-hours of reperfusion; additional comments toward the evaluation of cardiac function and remodeling by modifying the duration of reperfusion, is also presented. Overall, this AMI rat animal model is useful for studying the consequence of a myocardial infarction on cardiac pathophysiological and physiological function.
Medicine, Issue 48, Cardiovascular (CV), Heart Failure (HF), Acute Myocardial Infarction (AMI), Ischemia-Reperfusion (IR), Left Anterior Descending Artery (LAD)
2464
Play Button
Three-dimensional Optical-resolution Photoacoustic Microscopy
Authors: Song Hu, Konstantin Maslov, Lihong V. Wang.
Institutions: Washington University in St. Louis.
Optical microscopy, providing valuable insights at the cellular and organelle levels, has been widely recognized as an enabling biomedical technology. As the mainstays of in vivo three-dimensional (3-D) optical microscopy, single-/multi-photon fluorescence microscopy and optical coherence tomography (OCT) have demonstrated their extraordinary sensitivities to fluorescence and optical scattering contrasts, respectively. However, the optical absorption contrast of biological tissues, which encodes essential physiological/pathological information, has not yet been assessable. The emergence of biomedical photoacoustics has led to a new branch of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation is focused to the diffraction limit to achieve cellular1 or even subcellular2 level lateral resolution. As a valuable complement to existing optical microscopy technologies, OR-PAM brings in at least two novelties. First and most importantly, OR-PAM detects optical absorption contrasts with extraordinary sensitivity (i.e., 100%). Combining OR-PAM with fluorescence microscopy3 or with optical-scattering-based OCT4 (or with both) provides comprehensive optical properties of biological tissues. Second, OR-PAM encodes optical absorption into acoustic waves, in contrast to the pure optical processes in fluorescence microscopy and OCT, and provides background-free detection. The acoustic detection in OR-PAM mitigates the impacts of optical scattering on signal degradation and naturally eliminates possible interferences (i.e., crosstalks) between excitation and detection, which is a common problem in fluorescence microscopy due to the overlap between the excitation and fluorescence spectra. Unique for optical absorption imaging, OR-PAM has demonstrated broad biomedical applications since its invention, including, but not limited to, neurology5, 6, ophthalmology7, 8, vascular biology9, and dermatology10. In this video, we teach the system configuration and alignment of OR-PAM as well as the experimental procedures for in vivo functional microvascular imaging.
Bioengineering, Issue 51, Optical-resolution photoacoustic microscopy, in vivo functional imaging, label-free imaging, noninvasive imaging, hemoglobin oxygen saturation, total hemoglobin concentration
2729
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
4315
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
Authors: Pei-Yi Lin, Nadege Roche-Labarbe, Mathieu Dehaes, Stefan Carp, Angela Fenoglio, Beniamino Barbieri, Katherine Hagan, P. Ellen Grant, Maria Angela Franceschini.
Institutions: Massachusetts General Hospital, Harvard Medical School, Université de Caen Basse-Normandie, Boston Children's Hospital, Harvard Medical School, ISS, INC..
Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO2). Thus, measures of CMRO2 are reflective of neuronal viability and provide critical diagnostic information, making CMRO2 an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO2) as a surrogate for cerebral oxygen consumption. However, SO2 is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO2 are not sensitive enough to detect brain injury hours after the insult 1,2, because oxygen consumption and delivery reach equilibrium after acute transients 3. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO2 (CMRO2i) 4,5. With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development, and response to therapy in neonates. Moreover, this method adheres to all neonatal intensive care unit (NICU) policies on infection control and institutional policies on laser safety. Future work will seek to integrate the two instruments to reduce acquisition time at the bedside and to implement real-time feedback on data quality to reduce the rate of data rejection.
Medicine, Issue 73, Developmental Biology, Neurobiology, Neuroscience, Biomedical Engineering, Anatomy, Physiology, Near infrared spectroscopy, diffuse correlation spectroscopy, cerebral hemodynamic, cerebral metabolism, brain injury screening, brain health, brain development, newborns, neonates, imaging, clinical techniques
4379
Play Button
Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source
Authors: Gleb Pishchany, Kathryn P. Haley, Eric P. Skaar.
Institutions: Vanderbilt University Medical School.
S. aureus is a pathogenic bacterium that requires iron to carry out vital metabolic functions and cause disease. The most abundant reservoir of iron inside the human host is heme, which is the cofactor of hemoglobin. To acquire iron from hemoglobin, S. aureus utilizes an elaborate system known as the iron-regulated surface determinant (Isd) system1. Components of the Isd system first bind host hemoglobin, then extract and import heme, and finally liberate iron from heme in the bacterial cytoplasm2,3. This pathway has been dissected through numerous in vitro studies4-9. Further, the contribution of the Isd system to infection has been repeatedly demonstrated in mouse models8,10-14. Establishing the contribution of the Isd system to hemoglobin-derived iron acquisition and growth has proven to be more challenging. Growth assays using hemoglobin as a sole iron source are complicated by the instability of commercially available hemoglobin, contaminating free iron in the growth medium, and toxicity associated with iron chelators. Here we present a method that overcomes these limitations. High quality hemoglobin is prepared from fresh blood and is stored in liquid nitrogen. Purified hemoglobin is supplemented into iron-deplete medium mimicking the iron-poor environment encountered by pathogens inside the vertebrate host. By starving S. aureus of free iron and supplementing with a minimally manipulated form of hemoglobin we induce growth in a manner that is entirely dependent on the ability to bind hemoglobin, extract heme, pass heme through the bacterial cell envelope and degrade heme in the cytoplasm. This assay will be useful for researchers seeking to elucidate the mechanisms of hemoglobin-/heme-derived iron acquisition in S. aureus and possibly other bacterial pathogens.
Infection, Issue 72, Immunology, Microbiology, Infectious Diseases, Cellular Biology, Pathology, Micronutrients, Bacterial Infections, Gram-Positive Bacterial Infections, Bacteriology, Staphylococcus aureus, iron acquisition, hemoglobin, bacterial growth, bacteria
50072
Play Button
Antigens Protected Functional Red Blood Cells By The Membrane Grafting Of Compact Hyperbranched Polyglycerols
Authors: Rafi Chapanian, Iren Constantinescu, Donald E. Brooks, Mark D. Scott, Jayachandran Kizhakkedathu.
Institutions: University of British Columbia , University of British Columbia , University of British Columbia , University of British Columbia .
Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia 1-3. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens 4), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs 4, 5. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen ,glucose, and ions3. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers 6, 7, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane 8, 9 and mask RBC surface antigens10, 11.
Immunology, Issue 71, Bioengineering, Pathology, Chemistry, Biochemistry, Hematology, polymers, Blood transfusion, surface antigens, antigen camouflage, RBC modification, hyperbranched polyglycerol, HPG, red blood cells, RBC, whole blood, flow cytometry
50075
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
50124
Play Button
Micro-masonry for 3D Additive Micromanufacturing
Authors: Hohyun Keum, Seok Kim.
Institutions: University of Illinois at Urbana-Champaign.
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.
Physics, Issue 90, Micro-masonry, microassembly, transfer printing, dry adhesives, additive manufacturing, printed processes, microfabrication, inks, microelectromechanical system (MEMS)
51974
Play Button
Coherence between Brain Cortical Function and Neurocognitive Performance during Changed Gravity Conditions
Authors: Vera Brümmer, Stefan Schneider, Tobias Vogt, Heiko Strüder, Heather Carnahan, Christopher D. Askew, Roland Csuhaj.
Institutions: German Sport University Cologne, University of Toronto, Queensland University of Technology, Gilching, Germany.
Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out - undoubtedly because the technical and methodological means have not been available -, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It can be assumed that the long-term redistribution of the blood volume and the associated increase in the supply of oxygen to the brain will lead to changes in the central nervous system that are also responsible for anaemic processes, and which can in turn reduce performance (De Santo et al. 2005), which means that they could be crucial for the success and safety of a mission (Genik et al. 2005, Ellis 2000). Depending on these results, it will be necessary to develop and employ extensive countermeasures. Initial results for the MARS500 study suggest that, in addition to their significance in the context of the cardiovascular and locomotor systems, sport and physical activity can play a part in improving neurocognitive parameters. Before this can be fully established, however, it seems necessary to learn more about the influence of changing gravity conditions on neurophysiological processes and associated neurocognitive impairment.
Neuroscience, Issue 51, EEG, NIRS, electrotomography, parabolic flight, weightlessness, imaging, cognitive performance
2670
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.