JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
BMP4 is a peripherally-derived factor for motor neurons and attenuates glutamate-induced excitotoxicity in vitro.
PLoS ONE
PUBLISHED: 02-04-2013
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-?) superfamily, have been shown to play important roles in the nervous system, including neuronal survival and synaptogenesis. However, the physiological functions of BMP signaling in the mammalian neuromuscular system are not well understood. In this study, we found that proteins of the type II bone morphogenetic receptors (BMPRII) were detected at the neuromuscular junction (NMJ), and one of its ligands, BMP4, was expressed by Schwann cells and skeletal muscle fibers. In double-ligated nerves, BMP4 proteins accumulated at the proximal and distal portions of the axons, suggesting that Schwann cell- and muscle fiber-derived BMP4 proteins were anterogradely and retrogradely transported by motor neurons. Furthermore, BMP4 mRNA was down-regulated in nerves but up-regulated in skeletal muscles following nerve ligation. The motor neuron-muscle interactions were also demonstrated using differentiated C2C12 muscle cells and NG108-15 neurons in vitro. BMP4 mRNA and immunoreactivity were significantly up-regulated in differentiated C2C12 muscle cells when the motor neuron-derived factor, agrin, was present in the culture. Peripherally-derived BMP4, on the other hand, promotes embryonic motor neuron survival and protects NG108-15 neurons from glutamate-induced excitotoxicity. Together, these data suggest that BMP4 is a peripherally-derived factor that may regulate the survival of motor neurons.
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Published: 11-14-2014
ABSTRACT
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
23 Related JoVE Articles!
Play Button
Examination of Synaptic Vesicle Recycling Using FM Dyes During Evoked, Spontaneous, and Miniature Synaptic Activities
Authors: Sadahiro Iwabuchi, Yasuhiro Kakazu, Jin-Young Koh, Kirsty M. Goodman, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Bath.
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Neuroscience, Issue 85, Presynaptic Terminals, Synaptic Vesicles, Microscopy, Biological Assay, Nervous System, Endocytosis, exocytosis, fluorescence imaging, FM dye, neuron, photobleaching
50557
Play Button
Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae
Authors: Bibhudatta Mishra, Mostafa Ghannad-Rezaie, Jiaxing Li, Xin Wang, Yan Hao, Bing Ye, Nikos Chronis, Catherine A. Collins.
Institutions: University of Michigan, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
Bioengineering, Issue 84, Drosophila melanogaster, Live Imaging, Microfluidics, axonal injury, axonal degeneration, calcium imaging, photoconversion, laser microsurgery
50998
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
51050
Play Button
Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis
Authors: Lyndsay Murray, Thomas H Gillingwater, Rashmi Kothary.
Institutions: Ottawa Hospital Research Institute, University of Edinburgh.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.
Neuroscience, Issue 83, Transversus Abdominis, neuromuscular junction, NMJ, dissection, mouse, immunofluorescence
51162
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Excitotoxic Stimulation of Brain Microslices as an In vitro Model of Stroke
Authors: Kathryn A. Skelding, Jacinta M. Arellano, David A. Powis, John A. Rostas.
Institutions: The University of Newcastle, Southern Cross University, The University of Newcastle.
Examining molecular mechanisms involved in neuropathological conditions, such as ischemic stroke, can be difficult when using whole animal systems. As such, primary or 'neuronal-like' cell culture systems are commonly utilized. While these systems are relatively easy to work with, and are useful model systems in which various functional outcomes (such as cell death) can be readily quantified, the examined outcomes and pathways in cultured immature neurons (such as excitotoxicity-mediated cell death pathways) are not necessarily the same as those observed in mature brain, or in intact tissue. Therefore, there is the need to develop models in which cellular mechanisms in mature neural tissue can be examined. We have developed an in vitro technique that can be used to investigate a variety of molecular pathways in intact nervous tissue. The technique described herein utilizes rat cortical tissue, but this technique can be adapted to use tissue from a variety of species (such as mouse, rabbit, guinea pig, and chicken) or brain regions (for example, hippocampus, striatum, etc.). Additionally, a variety of stimulations/treatments can be used (for example, excitotoxic, administration of inhibitors, etc.). In conclusion, the brain slice model described herein can be used to examine a variety of molecular mechanisms involved in excitotoxicity-mediated brain injury.
Medicine, Issue 84, Brain slices, in vitro , excitotoxicity, brain injury, Mature brain tissue, Stimulation, stroke
51291
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
51433
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro
Authors: Alec S.T. Smith, Christopher J. Long, Christopher McAleer, Nathaniel Bobbitt, Balaji Srinivasan, James J. Hickman.
Institutions: University of Central Florida.
The development of more predictive and biologically relevant in vitro assays is predicated on the advancement of versatile cell culture systems which facilitate the functional assessment of the seeded cells. To that end, microscale cantilever technology offers a platform with which to measure the contractile functionality of a range of cell types, including skeletal, cardiac, and smooth muscle cells, through assessment of contraction induced substrate bending. Application of multiplexed cantilever arrays provides the means to develop moderate to high-throughput protocols for assessing drug efficacy and toxicity, disease phenotype and progression, as well as neuromuscular and other cell-cell interactions. This manuscript provides the details for fabricating reliable cantilever arrays for this purpose, and the methods required to successfully culture cells on these surfaces. Further description is provided on the steps necessary to perform functional analysis of contractile cell types maintained on such arrays using a novel laser and photo-detector system. The representative data provided highlights the precision and reproducible nature of the analysis of contractile function possible using this system, as well as the wide range of studies to which such technology can be applied. Successful widespread adoption of this system could provide investigators with the means to perform rapid, low cost functional studies in vitro, leading to more accurate predictions of tissue performance, disease development and response to novel therapeutic treatment.
Bioengineering, Issue 92, cantilever, in vitro, contraction, skeletal muscle, NMJ, cardiomyocytes, functional
51866
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
50189
Play Button
An In Vitro Preparation for Eliciting and Recording Feeding Motor Programs with Physiological Movements in Aplysia californica
Authors: Jeffrey M. McManus, Hui Lu, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors1, allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper2. However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs2,3,4, but it is very difficult to directly record from individual neurons5. Additionally, in vivo, ingestive programs can be further divided into bites and swallows1,2, a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes6. The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.
Neuroscience, Issue 70, Physiology, Biomedical Engineering, Anatomy, Marine Biology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, neurobiology, buccal mass, semi-intact preparation, extracellular electrodes, extracellular recording, neurons, animal model
4320
Play Button
Homarus Americanus Stomatogastric Nervous System Dissection
Authors: Anne-Elise Tobin, Hilary S. Bierman.
Institutions: Brandeis.
With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings.
Neuroscience, Issue 27, lobster, stomach, neural network, dissection, central pattern generator
1171
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
Detection of Signaling Effector-Complexes Downstream of BMP4 Using in situ PLA, a Proximity Ligation Assay
Authors: Efstathia Thymiakou, Vasso Episkopou.
Institutions: Imperial College, Hammersmith Hospital.
BMPs are responsible for a wide range of developmental and biological effects. BMP receptors activate (phosphorylate) the Smad1/5/8 effectors, which then, form a complex with Smad4 and translocate to the nucleus where they function as transcription factors to initiate BMP specific downstream effects 1. Traditional immuno-fluorescence techniques with antibodies against phospho-Smad peptides exhibit low sensitivity, high background and offer gross quantification as they rely on intensity of the antibody signal particularly if this is photosensitive fluorescent. In addition, phospho-Smads may not all be in complex with Smad4 and engaged in active transcription. In situ PLA is a technology capable of detecting protein interactions with high specificity and sensitivity 2-4. This new technology couples antibody recognition with the amplification of DNA surrogate of the protein. It generates a localized, discrete signal in a form of spots revealing the exact position of the recognition event. The number of signals can be counted and compared providing a measurement. We applied in situ PLA, using the Duolink kit, with a combination of antibodies that allows the detection of the BMP signaling effectors phospho-Smad1/5/8 and Smad4 only when these are in proximity i.e. in a complex, which occurs only with signaling activation. This allowed for the first time, the visualization and measurement of endogenous BMP signaling with high specificity and sensitivity in a time course experiment under BMP4 stimulation.
Cellular Biology, Issue 49, Proximity Ligation Assay, BMP, signaling, Smad4, Smad1/5, HEK293T, signaling effectors, phospho-Smads, immunocytochemistry, Antibody
2631
Play Button
Subcutaneous Administration of Muscarinic Antagonists and Triple-Immunostaining of the Levator Auris Longus Muscle in Mice
Authors: Megan Wright, Amy Kim, Young-Jin Son.
Institutions: Arcadia University, Temple University School of Medicine, Temple University School of Medicine.
Hind limb muscles of rodents, such as gastrocnemius and tibialis anterior, are frequently used for in vivo pharmacological studies of the signals essential for the formation and maintenance of mammalian NMJs. However, drug penetration into these muscles after subcutaneous or intramuscular administration is often incomplete or uneven and many NMJs can remain unaffected. Although systemic administration with devices such as mini-pumps can improve the spatiotemporal effects, the invasive nature of this approach can cause confounding inflammatory responses and/or direct muscle damage. Moreover, complete analysis of the NMJs in a hind limb muscle is challenging because it requires time-consuming serial sectioning and extensive immunostaining. The mouse LAL is a thin, flat sheet of muscle located superficially on the dorsum of the neck. It is a fast-twitch muscle that functions to move the pinna. It contains rostral and caudal portions that originate from the midline of the cranium and extend laterally to the cartilaginous portion of each pinna. The muscle is supplied by a branch of the facial nerve that projects caudally as it exits the stylomastoid foramen. We and others have found LAL to be a convenient preparation that offers advantages for the investigation of both short and long-term in vivo effects of drugs on NMJs and muscles. First, its superficial location facilitates multiple local applications of drugs under light anesthesia. Second, its thinness (2-3 layers of muscle fibers) permits visualization and analysis of almost all the NMJs within the muscle. Third, the ease of dissecting it with its nerve intact together with the pattern of its innervation permits supplementary electrophysiological analysis in vitro9,5. Last, and perhaps most importantly, a small applied volume (˜50μl) easily covers the entire muscle surface, provides a uniform and prolonged exposure of all its NMJs to the drug and eliminates the need for a systemic approach1,8.
Neuroscience, Issue 55, neuromuscular junction, immunohistochemistry, muscle, Schwann cells, acetylcholine receptors, confocal microscope
3124
Play Button
Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
Authors: David A. Goss, Richard L. Hoffman, Brian C. Clark.
Institutions: Ohio University.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
Medicine, Issue 59, neuroscience, muscle, electromyography, physiology, TMS, strength, motor control. sarcopenia, dynapenia, lumbar
3387
Play Button
A Functional Motor Unit in the Culture Dish: Co-culture of Spinal Cord Explants and Muscle Cells
Authors: Anne-Sophie Arnold, Martine Christe, Christoph Handschin.
Institutions: University of Basel.
Human primary muscle cells cultured aneurally in monolayer rarely contract spontaneously because, in the absence of a nerve component, cell differentiation is limited and motor neuron stimulation is missing1. These limitations hamper the in vitro study of many neuromuscular diseases in cultured muscle cells. Importantly, the experimental constraints of monolayered, cultured muscle cells can be overcome by functional innervation of myofibers with spinal cord explants in co-cultures. Here, we show the different steps required to achieve an efficient, proper innervation of human primary muscle cells, leading to complete differentiation and fiber contraction according to the method developed by Askanas2. To do so, muscle cells are co-cultured with spinal cord explants of rat embryos at ED 13.5, with the dorsal root ganglia still attached to the spinal cord slices. After a few days, the muscle fibers start to contract and eventually become cross-striated through innervation by functional neurites projecting from the spinal cord explants that connecting to the muscle cells. This structure can be maintained for many months, simply by regular exchange of the culture medium. The applications of this invaluable tool are numerous, as it represents a functional model for multidisciplinary analyses of human muscle development and innervation. In fact, a complete de novo neuromuscular junction installation occurs in a culture dish, allowing an easy measurement of many parameters at each step, in a fundamental and physiological context. Just to cite a few examples, genomic and/or proteomic studies can be performed directly on the co-cultures. Furthermore, pre- and post-synaptic effects can be specifically and separately assessed at the neuromuscular junction, because both components come from different species, rat and human, respectively. The nerve-muscle co-culture can also be performed with human muscle cells isolated from patients suffering from muscle or neuromuscular diseases3, and thus can be used as a screening tool for candidate drugs. Finally, no special equipment but a regular BSL2 facility is needed to reproduce a functional motor unit in a culture dish. This method thus is valuable for both the muscle as well as the neuromuscular research communities for physiological and mechanistic studies of neuromuscular function, in a normal and disease context.
Neuroscience, Issue 62, Human primary muscle cells, embryonic spinal cord explants, neurites, innervation, contraction, cell culture
3616
Play Button
Paired Patch Clamp Recordings from Motor-neuron and Target Skeletal Muscle in Zebrafish
Authors: Hua Wen, Paul Brehm.
Institutions: Oregon Health and Sciences University.
Larval zebrafish represent the first vertebrate model system to allow simultaneous patch clamp recording from a spinal motor-neuron and target muscle. This is a direct consequence of the accessibility to both cell types and ability to visually distinguish the single segmental CaP motor-neuron on the basis of morphology and location. This video demonstrates the microscopic methods used to identify a CaP motor-neuron and target muscle cells as well as the methodologies for recording from each cell type. Identification of the CaP motor-neuron type is confirmed by either dye filling or by the biophysical features such as action potential waveform and cell input resistance. Motor-neuron recordings routinely last for one hour permitting long-term recordings from multiple different target muscle cells. Control over the motor-neuron firing pattern enables measurements of the frequency-dependence of synaptic transmission at the neuromuscular junction. Owing to a large quantal size and the low noise provided by whole cell voltage clamp, all of the unitary events can be resolved in muscle. This feature permits study of basic synaptic properties such as release properties, vesicle recycling, as well as synaptic depression and facilitation. The advantages offered by this in vivo preparation eclipse previous neuromuscular model systems studied wherein the motor-neurons are usually stimulated by extracellular electrodes and the muscles are too large for whole cell patch clamp. The zebrafish preparation is amenable to combining electrophysiological analysis with a wide range of approaches including transgenic lines, morpholino knockdown, pharmacological intervention and in vivo imaging. These approaches, coupled with the growing number of neuromuscular disease models provided by mutant lines of zebrafish, open the door for new understanding of human neuromuscular disorders.
Neuroscience, Issue 45, Zebrafish, synapse, electrophysiology, patch clamp, acetylcholine receptor, neuromuscular, cholinergic/action potential, myasthenic syndrome, motor control
2351
Play Button
Electrophysiological Methods for Recording Synaptic Potentials from the NMJ of Drosophila Larvae
Authors: Wendy Imlach, Brian D. McCabe.
Institutions: Columbia University College of Physicians and Surgeons.
In this video, we describe the electrophysiological methods for recording synaptic transmission at the neuromuscular junction (NMJ) of Drosophila larva. The larval neuromuscular system is a model synapse for the study of synaptic physiology and neurotransmission, and is a valuable research tool that has defined genetics and is accessible to experimental manipulation. Larvae can be dissected to expose the body wall musculature, central nervous system, and peripheral nerves. The muscles of Drosophila and their innervation pattern are well characterized and muscles are easy to access for intracellular recording. Individual muscles can be identified by their location and orientation within the 8 abdominal segments, each with 30 muscles arranged in a pattern that is repeated in segments A2 - A7. Dissected drosophila larvae are thin and individual muscles and bundles of motor neuron axons can be visualized by transillumination1. Transgenic constructs can be used to label target cells for visual identification or for manipulating gene products in specific tissues. In larvae, excitatory junction potentials (EJP’s) are generated in response to vesicular release of glutamate from the motoneurons at the synapse. In dissected larvae, the EJP can be recorded in the muscle with an intracellular electrode. Action potentials can be artificially evoked in motor neurons that have been cut posterior to the ventral ganglion, drawn into a glass pipette by gentle suction and stimulated with an electrode. These motor neurons have distinct firing thresholds when stimulated, and when they fire simultaneously, they generate a response in the muscle. Signals transmitted across the NMJ synapse can be recorded in the muscles that the motor neurons innervate. The EJP’s and minature excitatory junction potentials (mEJP’s) are seen as changes in membrane potential. Electrophysiological responses are recorded at room temperature in modified minimal hemolymph-like solution2 (HL3) that contains 5 mM Mg2+ and 1.5 mM Ca2+. Changes in the amplitude of evoked EJP’s can indicate differences in synaptic function and structure. Digitized recordings are analyzed for EJP amplitude, mEJP frequency and amplitude, and quantal content.
Neuroscience, Issue 24, Neuromuscular junction, synaptic transmission, Drosophila larvae, electrophysiology
1109
Play Button
Placing Growth Factor-Coated Beads on Early Stage Chicken Embryos
Authors: Matthew J. Korn, Karina S. Cramer.
Institutions: University of California, Irvine (UCI).
The neural tube expresses many proteins in specific spatiotemporal patterns during development. These proteins have been shown to be critical for cell fate determination, cell migration, and formation of neural circuits. Neuronal induction and patterning involve bone morphogenetic protein (BMP), sonic hedgehog (SHH), fibroblast growth factor (FGF), among others. In particular, the expression pattern of Fgf8 is in close proximity to regions expressing BMP4 and SHH. This expression pattern is consistent with developmental interactions that facilitate patterning in the telencephalon. Here we provide a visual demonstration of a method in which an in ovo preparation can be used to test the effects of Fgfs in the formation of the forebrain. Beads are coated with protein and placed in the developing neural tube to provide sustained exposure. Because the procedure uses small, carefully placed beads, it is minimally invasive and allows several beads to be placed within a single neural tube. Moreover, the method allows for continued development so that embryos can be analyzed at a more mature stage to detect changes in anatomy and in neural patterning. This simple but useful protocol allows for real time imaging. It provides a means to make spatially and temporally limited changes to endogenous protein levels.
Developmental Biology, Issue 8, Neuroscience, Growth Factor, Heparin-Coated Beads, Chicken, Embryos
307
Play Button
ALS - Motor Neuron Disease: Mechanism and Development of New Therapies
Authors: Jeffrey D. Rothstein.
Institutions: Johns Hopkins University.
Medicine, Issue 6, Translational Research, Neuroscience, ALS, stem cells, brain, neuron, upper motor neuron, transplantation
245
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.