JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The expression and activity of cathepsins D, H and K in asthmatic airways.
PUBLISHED: 01-18-2013
Tumstatin is an anti-angiogenic collagen IV ?3 fragment, levels of which are reduced in the airways of asthmatics. Its reduction may be due to the degradation by extracellular matrix (ECM) proteases. Cathepsins play a role in ECM remodelling, with cathepsin D, H and K (CTSD, CTSH and CTSK) being associated with lung diseases. CTSD modulates the NC1 domains of collagen molecules including tumstatin, while CTSH and CTSK are involved in ECM degradation. The role of these cathepsins in the regulation of tumstatin in the lung has not previously been examined. We demonstrated that CTSB, D, F, H, K, L and S mRNA was expressed in the airways. Quantification of immunohistochemistry showed that there is no difference in the global expression of CTSD, CTSH and CTSK between asthmatics and non-asthmatics. CTSD and CTSK, but not CTSH had the capacity to degrade tumstatin. No difference was observed in the activity of CTSD and H in bronchoalveolar lavage fluid of asthmatic and non-asthmatics, while CTSK was undetectable. This indicates that while CTSD possesses the potential to directly regulate tumstatin, and thus angiogenesis through this mechanism however, it is not likely to be involved in the dysregulation of tumstatin found in asthmatic airways.
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Published: 08-30-2014
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
24 Related JoVE Articles!
Play Button
The Bovine Lung in Biomedical Research: Visually Guided Bronchoscopy, Intrabronchial Inoculation and In Vivo Sampling Techniques
Authors: Annette Prohl, Carola Ostermann, Markus Lohr, Petra Reinhold.
Institutions: Friedrich-Loeffler-Institut.
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Medicine, Issue 89, translational medicine, respiratory models, bovine lung, bronchoscopy, transbronchial lung biopsy, bronchoalveolar lavage, bronchial brushing, cytology brush
Play Button
Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface
Authors: Loretta Müller, Luisa E. Brighton, Johnny L. Carson, William A. Fischer II, Ilona Jaspers.
Institutions: The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.
Cellular Biology, Issue 80, Epithelium, Cell culture models, ciliated, air pollution, co-culture models, nasal epithelium
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Nonhuman Primate Lung Decellularization and Recellularization Using a Specialized Large-organ Bioreactor
Authors: Ryan W. Bonvillain, Michelle E. Scarritt, Nicholas C. Pashos, Jacques P. Mayeux, Christopher L. Meshberger, Aline M. Betancourt, Deborah E. Sullivan, Bruce A. Bunnell.
Institutions: Tulane University School of Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University School of Medicine.
There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue. The natural ECM is isolated by a process called decellularization. Decellularization is accomplished by treating tissues with a series of detergents, salts, and enzymes to achieve effective removal of cellular material while leaving the ECM intact. Studies conducted utilizing decellularization and subsequent recellularization of rodent lungs demonstrated marginal success in generating pulmonary-like tissue which is capable of gas exchange in vivo. While offering essential proof-of-concept, rodent models are not directly translatable to human use. Nonhuman primates (NHP) offer a more suitable model in which to investigate the use of bioartificial organ production for eventual clinical use. The protocols for achieving complete decellularization of lungs acquired from the NHP rhesus macaque are presented. The resulting acellular lungs can be seeded with a variety of cells including mesenchymal stem cells and endothelial cells. The manuscript also describes the development of a bioreactor system in which cell-seeded macaque lungs can be cultured under conditions of mechanical stretch and strain provided by negative pressure ventilation as well as pulsatile perfusion through the vasculature; these forces are known to direct differentiation along pulmonary and endothelial lineages, respectively. Representative results of decellularization and cell seeding are provided.
Bioengineering, Issue 82, rhesus macaque, decellularization, recellularization, detergent, matrix, scaffold, large-organ bioreactor, mesenchymal stem cells
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy
Authors: Esra Güç, Manuel Fankhauser, Amanda W. Lund, Melody A. Swartz, Witold W. Kilarski.
Institutions: École Polytechnique Fédérale de Lausanne, Oregon Health & Science University.
Besides being a physical scaffold to maintain tissue morphology, the extracellular matrix (ECM) is actively involved in regulating cell and tissue function during development and organ homeostasis. It does so by acting via biochemical, biomechanical, and biophysical signaling pathways, such as through the release of bioactive ECM protein fragments, regulating tissue tension, and providing pathways for cell migration. The extracellular matrix of the tumor microenvironment undergoes substantial remodeling, characterized by the degradation, deposition and organization of fibrillar and non-fibrillar matrix proteins. Stromal stiffening of the tumor microenvironment can promote tumor growth and invasion, and cause remodeling of blood and lymphatic vessels. Live imaging of matrix proteins, however, to this point is limited to fibrillar collagens that can be detected by second harmonic generation using multi-photon microscopy, leaving the majority of matrix components largely invisible. Here we describe procedures for tumor inoculation in the thin dorsal ear skin, immunolabeling of extracellular matrix proteins and intravital imaging of the exposed tissue in live mice using epifluorescence and two-photon microscopy. Our intravital imaging method allows for the direct detection of both fibrillar and non-fibrillar matrix proteins in the context of a growing dermal tumor. We show examples of vessel remodeling caused by local matrix contraction. We also found that fibrillar matrix of the tumor detected with the second harmonic generation is spatially distinct from newly deposited matrix components such as tenascin C. We also showed long-term (12 hours) imaging of T-cell interaction with tumor cells and tumor cells migration along the collagen IV of basement membrane. Taken together, this method uniquely allows for the simultaneous detection of tumor cells, their physical microenvironment and the endogenous tissue immune response over time, which may provide important insights into the mechanisms underlying tumor progression and ultimate success or resistance to therapy.
Bioengineering, Issue 86, Intravital imaging, epifluorescence, two-photon imaging, Tumor matrix, Matrix remodeling
Play Button
A Novel Surgical Approach for Intratracheal Administration of Bioactive Agents in a Fetal Mouse Model
Authors: Marianne S. Carlon, Jaan Toelen, Marina Mori da Cunha, Dragana Vidović, Anke Van der Perren, Steffi Mayer, Lourenço Sbragia, Johan Nuyts, Uwe Himmelreich, Zeger Debyser, Jan Deprest.
Institutions: KU Leuven, KU Leuven, KU Leuven, KU Leuven, KU Leuven.
Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome1,2 or hyperoxic injuries of the neonatal lung3. Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)4, genetic variants of surfactant deficiencies5 and α1-antitrypsin deficiency6. Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies7. In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep8, and even in a clinical setting9, but has to date not been performed before in a mouse model. When studying the potential of fetal gene therapy for genetic diseases such as CF, the mouse model is very useful as a first proof-of-concept because of the wide availability of different transgenic mouse strains, the well documented embryogenesis and fetal development, less stringent ethical regulations, short gestation and the large litter size. Different access routes have been described to target the fetal rodent lung, including intra-amniotic injection10-12, (ultrasound-guided) intrapulmonary injection13,14 and intravenous administration into the yolk sac vessels15,16 or umbilical vein17. Our novel surgical procedure enables researchers to inject the agent of choice directly into the fetal mouse trachea which allows for a more efficient delivery to the airways than existing techniques18.
Medicine, Issue 68, Fetal, intratracheal, intra-amniotic, cross-fostering, lung, microsurgery, gene therapy, mice, rAAV
Play Button
Quantitative Measurement of Invadopodia-mediated Extracellular Matrix Proteolysis in Single and Multicellular Contexts
Authors: Karen H. Martin, Karen E. Hayes, Elyse L. Walk, Amanda Gatesman Ammer, Steven M. Markwell, Scott A. Weed.
Institutions: West Virginia University .
Cellular invasion into local tissues is a process important in development and homeostasis. Malregulated invasion and subsequent cell movement is characteristic of multiple pathological processes, including inflammation, cardiovascular disease and tumor cell metastasis1. Focalized proteolytic degradation of extracellular matrix (ECM) components in the epithelial or endothelial basement membrane is a critical step in initiating cellular invasion. In tumor cells, extensive in vitro analysis has determined that ECM degradation is accomplished by ventral actin-rich membrane protrusive structures termed invadopodia2,3. Invadopodia form in close apposition to the ECM, where they moderate ECM breakdown through the action of matrix metalloproteinases (MMPs). The ability of tumor cells to form invadopodia directly correlates with the ability to invade into local stroma and associated vascular components3. Visualization of invadopodia-mediated ECM degradation of cells by fluorescent microscopy using dye-labeled matrix proteins coated onto glass coverslips has emerged as the most prevalent technique for evaluating the degree of matrix proteolysis and cellular invasive potential4,5. Here we describe a version of the standard method for generating fluorescently-labeled glass coverslips utilizing a commercially available Oregon Green-488 gelatin conjugate. This method is easily scaled to rapidly produce large numbers of coated coverslips. We show some of the common microscopic artifacts that are often encountered during this procedure and how these can be avoided. Finally, we describe standardized methods using readily available computer software to allow quantification of labeled gelatin matrix degradation mediated by individual cells and by entire cellular populations. The described procedures provide the ability to accurately and reproducibly monitor invadopodia activity, and can also serve as a platform for evaluating the efficacy of modulating protein expression or testing of anti-invasive compounds on extracellular matrix degradation in single and multicellular settings.
Cellular Biology, Issue 66, Cancer Biology, Anatomy, Molecular Biology, Biochemistry, invadopodia, extracellular matrix, gelatin, confocal microscopy, quantification, oregon green
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Multi-step Preparation Technique to Recover Multiple Metabolite Compound Classes for In-depth and Informative Metabolomic Analysis
Authors: Charmion Cruickshank-Quinn, Kevin D. Quinn, Roger Powell, Yanhui Yang, Michael Armstrong, Spencer Mahaffey, Richard Reisdorph, Nichole Reisdorph.
Institutions: National Jewish Health, University of Colorado Denver.
Metabolomics is an emerging field which enables profiling of samples from living organisms in order to obtain insight into biological processes. A vital aspect of metabolomics is sample preparation whereby inconsistent techniques generate unreliable results. This technique encompasses protein precipitation, liquid-liquid extraction, and solid-phase extraction as a means of fractionating metabolites into four distinct classes. Improved enrichment of low abundance molecules with a resulting increase in sensitivity is obtained, and ultimately results in more confident identification of molecules. This technique has been applied to plasma, bronchoalveolar lavage fluid, and cerebrospinal fluid samples with volumes as low as 50 µl.  Samples can be used for multiple downstream applications; for example, the pellet resulting from protein precipitation can be stored for later analysis. The supernatant from that step undergoes liquid-liquid extraction using water and strong organic solvent to separate the hydrophilic and hydrophobic compounds. Once fractionated, the hydrophilic layer can be processed for later analysis or discarded if not needed. The hydrophobic fraction is further treated with a series of solvents during three solid-phase extraction steps to separate it into fatty acids, neutral lipids, and phospholipids. This allows the technician the flexibility to choose which class of compounds is preferred for analysis. It also aids in more reliable metabolite identification since some knowledge of chemical class exists.
Bioengineering, Issue 89, plasma, chemistry techniques, analytical, solid phase extraction, mass spectrometry, metabolomics, fluids and secretions, profiling, small molecules, lipids, liquid chromatography, liquid-liquid extraction, cerebrospinal fluid, bronchoalveolar lavage fluid
Play Button
Bronchial Thermoplasty: A Novel Therapeutic Approach to Severe Asthma
Authors: David R. Duhamel, Jeff B. Hales.
Institutions: Virginia Hospital Center, Virginia Hospital Center.
Bronchial thermoplasty is a non-drug procedure for severe persistent asthma that delivers thermal energy to the airway wall in a precisely controlled manner to reduce excessive airway smooth muscle. Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby reducing the frequency of asthma attacks. Bronchial thermoplasty is delivered by the Alair System and is performed in three outpatient procedure visits, each scheduled approximately three weeks apart. The first procedure treats the airways of the right lower lobe, the second treats the airways of the left lower lobe and the third and final procedure treats the airways in both upper lobes. After all three procedures are performed the bronchial thermoplasty treatment is complete. Bronchial thermoplasty is performed during bronchoscopy with the patient under moderate sedation. All accessible airways distal to the mainstem bronchi between 3 and 10 mm in diameter, with the exception of the right middle lobe, are treated under bronchoscopic visualization. Contiguous and non-overlapping activations of the device are used, moving from distal to proximal along the length of the airway, and systematically from airway to airway as described previously. Although conceptually straightforward, the actual execution of bronchial thermoplasty is quite intricate and procedural duration for the treatment of a single lobe is often substantially longer than encountered during routine bronchoscopy. As such, bronchial thermoplasty should be considered a complex interventional bronchoscopy and is intended for the experienced bronchoscopist. Optimal patient management is critical in any such complex and longer duration bronchoscopic procedure. This article discusses the importance of careful patient selection, patient preparation, patient management, procedure duration, postoperative care and follow-up to ensure that bronchial thermoplasty is performed safely. Bronchial thermoplasty is expected to complement asthma maintenance medications by providing long-lasting asthma control and improving asthma-related quality of life of patients with severe asthma. In addition, bronchial thermoplasty has been demonstrated to reduce severe exacerbations (asthma attacks) emergency rooms visits for respiratory symptoms, and time lost from work, school and other daily activities due to asthma.
Medicine, Issue 45, bronchial thermoplasty, severe asthma, airway smooth muscle, bronchoscopy, radiofrequency energy, patient management, moderate sedation
Play Button
Procedure for Lung Engineering
Authors: Elizabeth A. Calle, Thomas H. Petersen, Laura E. Niklason.
Institutions: Yale University, Duke University, Yale University.
Lung tissue, including lung cancer and chronic lung diseases such as chronic obstructive pulmonary disease, cumulatively account for some 280,000 deaths annually; chronic obstructive pulmonary disease is currently the fourth leading cause of death in the United States1. Contributing to this mortality is the fact that lungs do not generally repair or regenerate beyond the microscopic, cellular level. Therefore, lung tissue that is damaged by degeneration or infection, or lung tissue that is surgically resected is not functionally replaced in vivo. To explore whether lung tissue can be generated in vitro, we treated lungs from adult rats using a procedure that removes cellular components to produce an acellular lung extracellular matrix scaffold. This scaffold retains the hierarchical branching structures of airways and vasculature, as well as a largely intact basement membrane, which comprises collagen IV, laminin, and fibronectin. The scaffold is mounted in a bioreactor designed to mimic critical aspects of lung physiology, such as negative pressure ventilation and pulsatile vascular perfusion. By culturing pulmonary epithelium and vascular endothelium within the bioreactor-mounted scaffold, we are able to generate lung tissue that is phenotypically comparable to native lung tissue and that is able to participate in gas exchange for short time intervals (45-120 minutes). These results are encouraging, and suggest that repopulation of lung matrix is a viable strategy for lung regeneration. This possibility presents an opportunity not only to work toward increasing the supply of lung tissue for transplantation, but also to study respiratory cell and molecular biology in vitro for longer time periods and in a more accurate microenvironment than has previously been possible.
Bioengineering, Issue 49, Decellularization, tissue engineering, lung engineering, lung tissue, extracellular matrix
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
An Experimental System to Study Mechanotransduction in Fetal Lung Cells
Authors: Yulian Wang, Zheping Huang, Pritha S. Nayak, Juan Sanchez-Esteban.
Institutions: Alpert Medical School of Brown University.
Mechanical forces generated in utero by repetitive breathing-like movements and by fluid distension are critical for normal lung development. A key component of lung development is the differentiation of alveolar type II epithelial cells, the major source of pulmonary surfactant. These cells also participate in fluid homeostasis in the alveolar lumen, host defense, and injury repair. In addition, distal lung parenchyma cells can be directly exposed to exaggerated stretch during mechanical ventilation after birth. However, the precise molecular and cellular mechanisms by which lung cells sense mechanical stimuli to influence lung development and to promote lung injury are not completely understood. Here, we provide a simple and high purity method to isolate type II cells and fibroblasts from rodent fetal lungs. Then, we describe an in vitro system, The Flexcell Strain Unit, to provide mechanical stimulation to fetal cells, simulating mechanical forces in fetal lung development or lung injury. This experimental system provides an excellent tool to investigate molecular and cellular mechanisms in fetal lung cells exposed to stretch. Using this approach, our laboratory has identified several receptors and signaling proteins that participate in mechanotransduction in fetal lung development and lung injury.
Bioengineering, Issue 60, Mechanical stretch, differentiation, lung injury, isolation, fetal, type II epithelial cells, fibroblasts
Play Button
MAME Models for 4D Live-cell Imaging of Tumor: Microenvironment Interactions that Impact Malignant Progression
Authors: Mansoureh Sameni, Arulselvi Anbalagan, Mary B. Olive, Kamiar Moin, Raymond R. Mattingly, Bonnie F. Sloane.
Institutions: Wayne State University , Wayne State University .
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.
Medicine, Issue 60, Immunology, Breast, cancer, extracellular matrix, invasion, proteolysis, tumor microenvironment
Play Button
Dissection and Culture of Mouse Dopaminergic and Striatal Explants in Three-Dimensional Collagen Matrix Assays
Authors: Ewoud R.E. Schmidt, Francesca Morello, R. Jeroen Pasterkamp.
Institutions: University Medical Center Utrecht.
Midbrain dopamine (mdDA) neurons project via the medial forebrain bundle towards several areas in the telencephalon, including the striatum1. Reciprocally, medium spiny neurons in the striatum that give rise to the striatonigral (direct) pathway innervate the substantia nigra2. The development of these axon tracts is dependent upon the combinatorial actions of a plethora of axon growth and guidance cues including molecules that are released by neurites or by (intermediate) target regions3,4. These soluble factors can be studied in vitro by culturing mdDA and/or striatal explants in a collagen matrix which provides a three-dimensional substrate for the axons mimicking the extracellular environment. In addition, the collagen matrix allows for the formation of relatively stable gradients of proteins released by other explants or cells placed in the vicinity (e.g. see references 5 and 6). Here we describe methods for the purification of rat tail collagen, microdissection of dopaminergic and striatal explants, their culture in collagen gels and subsequent immunohistochemical and quantitative analysis. First, the brains of E14.5 mouse embryos are isolated and dopaminergic and striatal explants are microdissected. These explants are then (co)cultured in collagen gels on coverslips for 48 to 72 hours in vitro. Subsequently, axonal projections are visualized using neuronal markers (e.g. tyrosine hydroxylase, DARPP32, or βIII tubulin) and axon growth and attractive or repulsive axon responses are quantified. This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of mesostriatal and striatonigral axon growth and guidance during development. Using this assay, it is also possible to assess other (intermediate) targets for dopaminergic and striatal axons or to test specific molecular cues.
Neuroscience, Issue 61, Axon guidance, collagen matrix, development, dissection, dopamine, medium spiny neuron, rat tail collagen, striatum, striatonigral, mesostriatal
Play Button
Optical Frequency Domain Imaging of Ex vivo Pulmonary Resection Specimens: Obtaining One to One Image to Histopathology Correlation
Authors: Lida P. Hariri, Matthew B. Applegate, Mari Mino-Kenudson, Eugene J. Mark, Brett E. Bouma, Guillermo J. Tearney, Melissa J. Suter.
Institutions: Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School.
Lung cancer is the leading cause of cancer-related deaths1. Squamous cell and small cell cancers typically arise in association with the conducting airways, whereas adenocarcinomas are typically more peripheral in location. Lung malignancy detection early in the disease process may be difficult due to several limitations: radiological resolution, bronchoscopic limitations in evaluating tissue underlying the airway mucosa and identifying early pathologic changes, and small sample size and/or incomplete sampling in histology biopsies. High resolution imaging modalities, such as optical frequency domain imaging (OFDI), provide non-destructive, large area 3-dimensional views of tissue microstructure to depths approaching 2 mm in real time (Figure 1)2-6. OFDI has been utilized in a variety of applications, including evaluation of coronary artery atherosclerosis6,7 and esophageal intestinal metaplasia and dysplasia6,8-10. Bronchoscopic OCT/OFDI has been demonstrated as a safe in vivo imaging tool for evaluating the pulmonary airways11-23 (Animation). OCT has been assessed in pulmonary airways16,23 and parenchyma17,22 of animal models and in vivo human airway14,15. OCT imaging of normal airway has demonstrated visualization of airway layering and alveolar attachments, and evaluation of dysplastic lesions has been found useful in distinguishing grades of dysplasia in the bronchial mucosa11,12,20,21. OFDI imaging of bronchial mucosa has been demonstrated in a short bronchial segment (0.8 cm)18. Additionally, volumetric OFDI spanning multiple airway generations in swine and human pulmonary airways in vivo has been described19. Endobronchial OCT/OFDI is typically performed using thin, flexible catheters, which are compatible with standard bronchoscopic access ports. Additionally, OCT and OFDI needle-based probes have recently been developed, which may be used to image regions of the lung beyond the airway wall or pleural surface17. While OCT/OFDI has been utilized and demonstrated as feasible for in vivo pulmonary imaging, no studies with precisely matched one-to-one OFDI:histology have been performed. Therefore, specific imaging criteria for various pulmonary pathologies have yet to be developed. Histopathological counterparts obtained in vivo consist of only small biopsy fragments, which are difficult to correlate with large OFDI datasets. Additionally, they do not provide the comprehensive histology needed for registration with large volume OFDI. As a result, specific imaging features of pulmonary pathology cannot be developed in the in vivo setting. Precisely matched, one-to-one OFDI and histology correlation is vital to accurately evaluate features seen in OFDI against histology as a gold standard in order to derive specific image interpretation criteria for pulmonary neoplasms and other pulmonary pathologies. Once specific imaging criteria have been developed and validated ex vivo with matched one-to-one histology, the criteria may then be applied to in vivo imaging studies. Here, we present a method for precise, one to one correlation between high resolution optical imaging and histology in ex vivo lung resection specimens. Throughout this manuscript, we describe the techniques used to match OFDI images to histology. However, this method is not specific to OFDI and can be used to obtain histology-registered images for any optical imaging technique. We performed airway centered OFDI with a specialized custom built bronchoscopic 2.4 French (0.8 mm diameter) catheter. Tissue samples were marked with tissue dye, visible in both OFDI and histology. Careful orientation procedures were used to precisely correlate imaging and histological sampling locations. The techniques outlined in this manuscript were used to conduct the first demonstration of volumetric OFDI with precise correlation to tissue-based diagnosis for evaluating pulmonary pathology24. This straightforward, effective technique may be extended to other tissue types to provide precise imaging to histology correlation needed to determine fine imaging features of both normal and diseased tissues.
Bioengineering, Issue 71, Medicine, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Pathology, Surgery, Bronchoscopic imaging, In vivo optical microscopy, Optical imaging, Optical coherence tomography, Optical frequency domain imaging, Histology correlation, animal model, histopathology, airway, lung, biopsy, imaging
Play Button
In vitro Cell Culture Model for Toxic Inhaled Chemical Testing
Authors: Shama Ahmad, Aftab Ahmad, Keith B. Neeves, Tara Hendry-Hofer, Joan E. Loader, Carl W. White, Livia Veress.
Institutions: University of Colorado, Colorado School of Mines.
Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.
Bioengineering, Issue 87, air-liquid interface, chlorine exposure, toxic inhaled chemicals, Transepithelial Electrical Resistance,Immunocytochemistry
Play Button
Protein Transfection of Mouse Lung
Authors: Patrick Geraghty, Robert Foronjy.
Institutions: St. Luke's Roosevelt Medical Center.
Increasing protein expression enables researchers to better understand the functional role of that protein in regulating key biological processes1. In the lung, this has been achieved typically through genetic approaches that utilize transgenic mice2,3 or viral or non-viral vectors that elevate protein levels via increased gene expression4. Transgenic mice are costly and time-consuming to generate and the random insertion of a transgene or chronic gene expression can alter normal lung development and thus limit the utility of the model5. While conditional transgenics avert problems associated with chronic gene expression6, the reverse tetracycline-controlled transactivator (rtTA) mice, which are used to generate conditional expression, develop spontaneous air space enlargement7. As with transgenics, the use of viral and non-viral vectors is expensive8 and can provoke dose-dependent inflammatory responses that confound results9 and hinder expression10. Moreover, the efficacy of repeated doses are limited by enhanced immune responses to the vector11,12. Researchers are developing adeno-associated viral (AAV) vectors that provoke less inflammation and have longer expression within the lung13. Using β-galactosidase, we present a method for rapidly and effectively increasing protein expression within the lung using a direct protein transfection technique. This protocol mixes a fixed amount of purified protein with 20 μl of a lipid-based transfection reagent (Pro-Ject, Pierce Bio) to allow penetration into the lung tissue itself. The liposomal protein mixture is then injected into the lungs of the mice via the trachea using a microsprayer (Penn Century, Philadelphia, PA). The microsprayer generates a fine plume of liquid aerosol throughout the lungs. Using the technique we have demonstrated uniform deposition of the injected protein throughout the airways and the alveoli of mice14. The lipid transfection technique allows the use of a small amount of protein to achieve effect. This limits the inflammatory response that otherwise would be provoked by high protein administration. Indeed, using this technique we published that we were able to significantly increase PP2A activity in the lung without affecting lung lavage cellularity15. Lung lavage cellularity taken 24 hr after challenge was comparable to controls (27±4 control vs. 31±5 albumin transfected; N=6 per group). Moreover, it increases protein levels without inducing lung developmental changes or architectural changes that can occur in transgenic models. However, the need for repeated administrations may make this technique less favorable for studies examining the effects of long-term increases in protein expression. This would be particularly true for proteins with short half-lives.
Molecular Biology, Issue 75, Medicine, Biomedical Engineering, Bioengineering, Biochemistry, Genetics, Cellular Biology, Anatomy, Physiology, Proteins, Torso, Tissues, Cells, Animal Structures, Respiratory System, Eukaryota, Immune System Diseases, Respiratory Tract Diseases, Natural Science Disciplines, Life Sciences (General), transfection, lung, protein, mice, inflammation, animal model
Play Button
Modeling and Imaging 3-Dimensional Collective Cell Invasion
Authors: Rebecca W. Scott, Diane Crighton, Michael F. Olson.
Institutions: University of Strathclyde , The Beatson Institute for Cancer Research.
A defining characteristic of cancer malignancy is invasion and metastasis 1. In some cancers (e.g. glioma 2), local invasion into surrounding healthy tissue is the root cause of disease and death. For other cancers (e.g. breast, lung, etc.), it is the process of metastasis, in which tumor cells move from a primary tumor mass, colonize distal sites and ultimately contribute to organ failure, that eventually leads to morbidity and mortality 3. It has been estimated that invasion and metastasis are responsible for 90% of cancer deaths 4. As a result, there has been intense interest in identifying the molecular processes and critical protein mediators of invasion and metastasis for the purposes of improving diagnosis and treatment 5. A challenge for cancer scientists is to develop invasion assays that sufficiently resemble the in vivo situation to enable accurate disease modeling 6. Two-dimensional cell motility assays are only informative about one aspect of invasion and do not take into account extracellular matrix (ECM) protein remodeling which is also a critical element. Recently, research has refined our understanding of tumor cell invasion and revealed that individual cells may move by elongated or rounded modes 7. In addition, there has been greater appreciation of the contribution of collective invasion, in which cells invade in strands, sheets and clusters, particularly in highly differentiated tumors that maintain epithelial characteristics, to the spread of cancer 8. We present a refined method 9 for examining the contributions of candidate proteins to collective invasion 10. In particular, by engineering separate pools of cells to express different fluorescent proteins, it is possible to molecularly dissect the activities and proteins required in leading cells versus those required in following cells. The use of RNAi provides the molecular tool to experimentally disassemble the processes involved in individual cell invasion as well as in different positions of collective invasion. In this procedure, mixtures of fluorescently-labeled cells are plated on the bottom of a Transwell insert previously filled with Matrigel ECM protein, then allowed to invade "upwards" through the filter and into the Matrigel. Reconstruction of z-series image stacks, obtained by confocal imaging, into three-dimensional representations allows for visualization of collectively invading strands and analysis of the representation of fluorescently-labeled cells in leading versus following positions.
Medicine, Issue 58, cancer, cell invasion, imaging, retroviral labeling, RNAi, 3D, Matrix, Matrigel, ECM
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
Play Button
Tracheotomy: A Method for Transplantation of Stem Cells to the Lung
Authors: Yakov Peter.
Institutions: Harvard Medical School.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.
Cellular Biology, Issue 2, lung, stem cells, transplantation, trachea
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.