JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Imaging of mitochondrial and non-mitochondrial responses in cultured rat hippocampal neurons exposed to micromolar concentrations of TMRM.
PLoS ONE
PUBLISHED: 01-31-2013
Tetramethylrhodamine methyl ester (TMRM) is a fluorescent dye used to study mitochondrial function in living cells. Previously, we reported that TMRM effectively labeled mitochondria of neurons deep within mouse brain slices. Use of micromolar concentration of dye, which was required to get sufficient staining for two-photon imaging, resulted in typical fluctuations of TMRM. With prolonged exposure, we recorded additional responses in some neurons that included slow oscillations and propagating waves of fluorescence. (Note: We use the terms "fluctuation" to refer to a change in the fluorescent state of an individual mitochondrion, "oscillation" to refer to a localized change in fluorescence in the cytosol, and "wave" to refer to a change in cytosolic fluorescence that propagated within a cell. Use of these terms does not imply any underlying periodicity.) In this report we describe similar results using cultured rat hippocampal neurons. Prolonged exposure of cultures to 2.5 µM TMRM produced a spontaneous increase in fluorescence in some neurons, but not glial cells, after 45-60 minutes that was followed by slow oscillations, waves, and eventually apoptosis. Spontaneous increases in fluorescence were insensitive to high concentrations of FCCP (100 µM) and thapsigargin (10 µM) indicating that they originated, at least in part, from regions outside of mitochondria. The oscillations did not correlate with changes in intracellular Ca(2+), but did correlate with differences in fluorescence lifetime of the dye. Fluorescence lifetime and one-photon ratiometric imaging of TMRM suggested that the spontaneous increase and subsequent oscillations were due to movement of dye between quenched (hydrophobic) and unquenched (hydrophilic) compartments. We propose that these movements may be correlates of intracellular events involved in early stages of apoptosis.
Authors: Sarah Pickles, Nathalie Arbour, Christine Vande Velde.
Published: 09-18-2014
ABSTRACT
Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.
18 Related JoVE Articles!
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons
Authors: Dinesh C. Joshi, Joanna C. Bakowska.
Institutions: Loyola University Chicago.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.
Neuroscience, Issue 51, Mitochondrial membrane potential, reactive oxygen species, neuroscience, cortical neurons
2704
Play Button
Confocal Imaging of Single Mitochondrial Superoxide Flashes in Intact Heart or In Vivo
Authors: Guohua Gong, Wang Wang.
Institutions: University of Washington.
Mitochondrion is a critical intracellular organelle responsible for energy production and intracellular signaling in eukaryotic systems. Mitochondrial dysfunction often accompanies and contributes to human disease. Majority of the approaches that have been developed to evaluate mitochondrial function and dysfunction are based on in vitro or ex vivo measurements. Results from these experiments have limited ability in determining mitochondrial function in vivo. Here, we describe a novel approach that utilizes confocal scanning microscopy for the imaging of intact tissues in live aminals, which allows the evaluation of single mitochondrial function in a real-time manner in vivo. First, we generate transgenic mice expressing the mitochondrial targeted superoxide indicator, circularly permuted yellow fluorescent protein (mt-cpYFP). Anesthetized mt-cpYFP mouse is fixed on a custom-made stage adaptor and time-lapse images are taken from the exposed skeletal muscles of the hindlimb. The mouse is subsequently sacrificed and the heart is set up for Langendorff perfusion with physiological solutions at 37 °C. The perfused heart is positioned in a special chamber on the confocal microscope stage and gentle pressure is applied to immobilize the heart and suppress heart beat induced motion artifact. Superoxide flashes are detected by real-time 2D confocal imaging at a frequency of one frame per second. The perfusion solution can be modified to contain different respiration substrates or other fluorescent indicators. The perfusion can also be adjusted to produce disease models such as ischemia and reperfusion. This technique is a unique approach for determining the function of single mitochondrion in intact tissues and in vivo.
Physiology, Issue 81, Heart Diseases, Metabolic Diseases, Microscopy, Confocal, Time-Lapse Imaging, Physiological Processes, Confocal imaging, mt-cpYFP transgenic mice, Superoxide flashes, Single mitochondrial measurement, Langendorff perfused heart, Skeletal muscles, in vivo
50818
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
51458
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Authors: Natalia B. Pivovarova, S. Brian Andrews.
Institutions: National Institutes of Health.
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance.
Neuroscience, Issue 81, Cryoelectron Microscopy, Spectrum Analysis, Calcium Signaling, Cell Physiological Processes, analytical electron microscopy, cryosectioning, mitochondria, excitotoxicity, ischemia
50807
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
51869
Play Button
Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography
Authors: Sarah H. Shahmoradian, Mauricio R. Galiano, Chengbiao Wu, Shurui Chen, Matthew N. Rasband, William C. Mobley, Wah Chiu.
Institutions: Baylor College of Medicine, Baylor College of Medicine, University of California at San Diego, Baylor College of Medicine.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.
Neuroscience, Issue 84, Neurons, Cryo-electron Microscopy, Electron Microscope Tomography, Brain, rat, primary neuron culture, morphological assay
50783
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Examination of Synaptic Vesicle Recycling Using FM Dyes During Evoked, Spontaneous, and Miniature Synaptic Activities
Authors: Sadahiro Iwabuchi, Yasuhiro Kakazu, Jin-Young Koh, Kirsty M. Goodman, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Bath.
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Neuroscience, Issue 85, Presynaptic Terminals, Synaptic Vesicles, Microscopy, Biological Assay, Nervous System, Endocytosis, exocytosis, fluorescence imaging, FM dye, neuron, photobleaching
50557
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
50317
Play Button
Imaging Calcium Responses in GFP-tagged Neurons of Hypothalamic Mouse Brain Slices
Authors: Christian Schauer, Trese Leinders-Zufall.
Institutions: University of Saarland, Homburg, Germany.
Despite an enormous increase in our knowledge about the mechanisms underlying the encoding of information in the brain, a central question concerning the precise molecular steps as well as the activity of specific neurons in multi-functional nuclei of brain areas such as the hypothalamus remain. This problem includes identification of the molecular components involved in the regulation of various neurohormone signal transduction cascades. Elevations of intracellular Ca2+ play an important role in regulating the sensitivity of neurons, both at the level of signal transduction and at synaptic sites. New tools have emerged to help identify neurons in the myriad of brain neurons by expressing green fluorescent protein (GFP) under the control of a particular promoter. To monitor both spatially and temporally stimulus-induced Ca2+ responses in GFP-tagged neurons, a non-green fluorescent Ca2+ indicator dye needs to be used. In addition, confocal microscopy is a favorite method of imaging individual neurons in tissue slices due to its ability to visualize neurons in distinct planes of depth within the tissue and to limit out-of-focus fluorescence. The ratiometric Ca2+ indicator fura-2 has been used in combination with GFP-tagged neurons1. However, the dye is excited by ultraviolet (UV) light. The cost of the laser and the limited optical penetration depth of UV light hindered its use in many laboratories. Moreover, GFP fluorescence may interfere with the fura-2 signals2. Therefore, we decided to use a red fluorescent Ca2+ indicator dye. The huge Stokes shift of fura-red permits multicolor analysis of the red fluorescence in combination with GFP using a single excitation wavelength. We had previously good results using fura-red in combination with GFP-tagged olfactory neurons3. The protocols for olfactory tissue slices seemed to work equally well in hypothalamic neurons4. Fura-red based Ca2+ imaging was also successfully combined with GFP-tagged pancreatic β-cells and GFP-tagged receptors expressed in HEK cells5,6. A little quirk of fura-red is that its fluorescence intensity at 650 nm decreases once the indicator binds calcium7. Therefore, the fluorescence of resting neurons with low Ca2+ concentration has relatively high intensity. It should be noted, that other red Ca2+-indicator dyes exist or are currently being developed, that might give better or improved results in different neurons and brain areas.
Neuroscience, Issue 66, Molecular Biology, Medicine, GFP, fura-red, calcium, confocal imaging, neuron, hypothalamus, brain, olfaction, mouse, slice preparation
4213
Play Button
Methods to Assess Beta Cell Death Mediated by Cytotoxic T Lymphocytes
Authors: Jing Chen, Scott Grieshaber, Clayton E. Mathews.
Institutions: University of Florida.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes. Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents.
Immunology, Issue 52, cell, Type 1 Diabetes, Autoimmunity, Cytotoxic T Lymphocyte
2724
Play Button
Neuromodulation and Mitochondrial Transport: Live Imaging in Hippocampal Neurons over Long Durations
Authors: David B. Edelman, Geoffrey C. Owens, Sigeng Chen.
Institutions: The Neurosciences Institute.
To understand the relationship between mitochondrial transport and neuronal function, it is critical to observe mitochondrial behavior in live cultured neurons for extended durations1-3. This is now possible through the use of vital dyes and fluorescent proteins with which cytoskeletal components, organelles, and other structures in living cells can be labeled and then visualized via dynamic fluorescence microscopy. For example, in embryonic chicken sympathetic neurons, mitochondrial movement was characterized using the vital dye rhodamine 1234. In another study, mitochondria were visualized in rat forebrain neurons by transfection of mitochondrially targeted eYFP5. However, imaging of primary neurons over minutes, hours, or even days presents a number of issues. Foremost among these are: 1) maintenance of culture conditions such as temperature, humidity, and pH during long imaging sessions; 2) a strong, stable fluorescent signal to assure both the quality of acquired images and accurate measurement of signal intensity during image analysis; and 3) limiting exposure times during image acquisition to minimize photobleaching and avoid phototoxicity. Here, we describe a protocol that permits the observation, visualization, and analysis of mitochondrial movement in cultured hippocampal neurons with high temporal resolution and under optimal life support conditions. We have constructed an affordable stage-top incubator that provides good temperature regulation and atmospheric gas flow, and also limits the degree of media evaporation, assuring stable pH and osmolarity. This incubator is connected, via inlet and outlet hoses, to a standard tissue culture incubator, which provides constant humidity levels and an atmosphere of 5-10% CO2/air. This design offers a cost-effective alternative to significantly more expensive microscope incubators that don't necessarily assure the viability of cells over many hours or even days. To visualize mitochondria, we infect cells with a lentivirus encoding a red fluorescent protein that is targeted to the mitochondrion. This assures a strong and persistent signal, which, in conjunction with the use of a stable xenon light source, allows us to limit exposure times during image acquisition and all but precludes photobleaching and phototoxicity. Two injection ports on the top of the stage-top incubator allow the acute administration of neurotransmitters and other reagents intended to modulate mitochondrial movement. In sum, lentivirus-mediated expression of an organelle-targeted red fluorescent protein and the combination of our stage-top incubator, a conventional inverted fluorescence microscope, CCD camera, and xenon light source allow us to acquire time-lapse images of mitochondrial transport in living neurons over longer durations than those possible in studies deploying conventional vital dyes and off-the-shelf life support systems.
Neuroscience, Issue 52, Mitochondria, Transport, Neuromodulation, Hippocampal neuron, Serotonin, Dopamine, Fluorescence, Time-lapse, Live imaging, Stage-top incubator
2599
Play Button
Techniques for Imaging Ca2+ Signaling in Human Sperm
Authors: Katherine Nash, Linda Lefievre, Ruben Peralta-Arias, Jennifer Morris, Aduen Morales-Garcia, Tom Connolly, Sarah Costello, Jackson C. Kirkman-Brown, Stephen J. Publicover.
Institutions: University of Birmingham, University of Birmingham, Birmingham Women’s Hospital.
Fluorescence microscopy of cells loaded with fluorescent, Ca2+-sensitive dyes is used for measurement of spatial and temporal aspects of Ca2+ signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca2+-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-up and incubated under capacitating conditions for 0-24 h, depending upon the experiment. The cell-permeant AM (acetoxy methyl ester) ester form of the Ca2+-reporting dye is then added to a cell aliquot and a period of 1 h is allowed for loading of the dye into the cytoplasm. We use visible wavelength dyes to minimize photo-damage to the cells, but this means that ratiometric recording is not possible. Advantages and disadvantages of this approach are discussed. During the loading period cells are introduced into an imaging chamber and allowed to adhere to a poly-D-lysine coated coverslip. At the end of the loading period excess dye and loose cells are removed by connection of the chamber to the perfusion apparatus. The chamber is perfused continuously, stimuli and modified salines are then added to the perfusion header. Experiments are recorded by time-lapse acquisition of fluorescence images and analyzed in detail offline, by manually drawing regions of interest. Data are normalized to pre-stimulus levels such that, for each cell (or part of a cell), a graph showing the Ca2+ response as % change in fluorescence is obtained.
Cellular Biology, Issue 40, sperm, human, calcium, fluorescence microscopy
1996
Play Button
Monitoring Dynamic Changes In Mitochondrial Calcium Levels During Apoptosis Using A Genetically Encoded Calcium Sensor
Authors: Askar M. Akimzhanov, Darren Boehning.
Institutions: University of Texas Medical Branch.
Dynamic changes in intracellular calcium concentration in response to various stimuli regulates many cellular processes such as proliferation, differentiation, and apoptosis1. During apoptosis, calcium accumulation in mitochondria promotes the release of pro-apoptotic factors from the mitochondria into the cytosol2. It is therefore of interest to directly measure mitochondrial calcium in living cells in situ during apoptosis. High-resolution fluorescent imaging of cells loaded with dual-excitation ratiometric and non-ratiometric synthetic calcium indicator dyes has been proven to be a reliable and versatile tool to study various aspects of intracellular calcium signaling. Measuring cytosolic calcium fluxes using these techniques is relatively straightforward. However, measuring intramitochondrial calcium levels in intact cells using synthetic calcium indicators such as rhod-2 and rhod-FF is more challenging. Synthetic indicators targeted to mitochondria have blunted responses to repetitive increases in mitochondrial calcium, and disrupt mitochondrial morphology3. Additionally, synthetic indicators tend to leak out of mitochondria over several hours which makes them unsuitable for long-term experiments. Thus, genetically encoded calcium indicators based upon green fluorescent protein (GFP)4 or aequorin5 targeted to mitochondria have greatly facilitated measurement of mitochondrial calcium dynamics. Here, we describe a simple method for real-time measurement of mitochondrial calcium fluxes in response to different stimuli. The method is based on fluorescence microscopy of 'ratiometric-pericam' which is selectively targeted to mitochondria. Ratiometric pericam is a calcium indicator based on a fusion of circularly permuted yellow fluorescent protein and calmodulin4. Binding of calcium to ratiometric pericam causes a shift of its excitation peak from 415 nm to 494 nm, while the emission spectrum, which peaks around 515 nm, remains unchanged. Ratiometric pericam binds a single calcium ion with a dissociation constant in vitro of ~1.7 μM4. These properties of ratiometric pericam allow the quantification of rapid and long-term changes in mitochondrial calcium concentration. Furthermore, we describe adaptation of this methodology to a standard wide-field calcium imaging microscope with commonly available filter sets. Using two distinct agonists, the purinergic agonist ATP and apoptosis-inducing drug staurosporine, we demonstrate that this method is appropriate for monitoring changes in mitochondrial calcium concentration with a temporal resolution of seconds to hours. Furthermore, we also demonstrate that ratiometric pericam is also useful for measuring mitochondrial fission/fragmentation during apoptosis. Thus, ratiometric pericam is particularly well suited for continuous long-term measurement of mitochondrial calcium dynamics during apoptosis.
Cellular Biology, Issue 50, Ratiometric pericam, mitochondria, calcium, apoptosis, staurosporine, live cell imaging
2579
Play Button
Calcium Imaging of Cortical Neurons using Fura-2 AM
Authors: Odmara L Barreto-Chang, Ricardo E Dolmetsch.
Institutions: Stanford University , Stanford University School of Medicine.
Calcium imaging is a common technique that is useful for measuring calcium signals in cultured cells. Calcium imaging techniques take advantage of calcium indicator dyes, which are BAPTA-based organic molecules that change their spectral properties in response to the binding of Ca2+ ions. Calcium indicator dyes fall into two categories, ratio-metric dyes like Fura-2 and Indo-1 and single-wavelength dyes like Fluo-4. Ratio-metric dyes change either their excitation or their emission spectra in response to calcium, allowing the concentration of intracellular calcium to be determined from the ratio of fluorescence emission or excitation at distinct wavelengths. The main advantage of using ratio-metric dyes over single wavelength probes is that the ratio signal is independent of the dye concentration, illumination intensity, and optical path length allowing the concentration of intracellular calcium to be determined independently of these artifacts. One of the most common calcium indicators is Fura-2, which has an emission peak at 505 nM and changes its excitation peak from 340 nm to 380 nm in response to calcium binding. Here we describe the use of Fura-2 to measure intracellular calcium elevations in neurons and other excitable cells.
Neuroscience, Issue 23, calcium imaging, calcium channels, calcium, neurons, excitable cells, time-lapse, Fura-2, Calcium indicator,intracellular calcium
1067
Play Button
Measuring Exocytosis in Neurons Using FM Labeling
Authors: Jamila Newton, Venkatesh Murthy.
Institutions: Harvard.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle release. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds into the membranes of synaptic vesicles as endocytosis is stimulated. Lipophilic interactions cause the dye to greatly increase in fluorescence, thus emitting a bright signal when associated with vesicles and a nominal one when in the extracellular fluid. After a wash step is used to help remove external dye within the plasma membrane, the remaining FM is concentrated within the vesicles and is then expelled when exocytosis is induced by another round of electrical stimulation. The rate of vesicles release is measured from the resulting decrease in fluorescence. Since FM dye can be applied external and transiently, it is a useful tool for determining rates of exocytosis in neuronal cultures, especially when comparing the rates between transfected synapses and neighboring control boutons.
Neuroscience, Issue 1, neuron, imaging, exocytosis
117
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.