JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Ubiquitin-like protein from human placental extract exhibits collagenase activity.
PUBLISHED: 02-15-2013
An aqueous extract of human placenta exhibits strong gelatinase/collagenase activity in zymography. 2-D gel electrophoresis of the extract with gelatin zymography in the second dimension displayed a single spot, identified as ubiquitin-like component upon MALDI/TOF MS/MS analysis. Immunoblot indicated presence of ubiquitin and absence of collagenase in the extract. Collagenase activity of the ubiquitin-like component was confirmed from the change in solubility of collagen in aqueous buffer, degradation of collagen by size-exclusion HPLC and atomic force microscopy. Quantification with DQ-gelatin showed that the extract contains 0.04 U/ml of collagenase activity that was inhibited up to 95% by ubiquitin antibody. Ubiquitin from bovine erythrocytes demonstrated mild collagenase activity. Bioinformatics studies suggest that placental ubiquitin and collagenase follow structurally divergent evolution. This thermostable intrinsic collagenase activity of placental extract might have wide physiological relevance in degrading and remodeling collagen as it is used as a drug for wound healing and pelvic inflammatory diseases.
Authors: Elena García-Cano, Adi Zaltsman, Vitaly Citovsky.
Published: 03-26-2014
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions. The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.
21 Related JoVE Articles!
Play Button
Reporter-based Growth Assay for Systematic Analysis of Protein Degradation
Authors: Itamar Cohen, Yifat Geffen, Guy Ravid, Tommer Ravid.
Institutions: The Hebrew University of Jerusalem.
Protein degradation by the ubiquitin-proteasome system (UPS) is a major regulatory mechanism for protein homeostasis in all eukaryotes. The standard approach to determining intracellular protein degradation relies on biochemical assays for following the kinetics of protein decline. Such methods are often laborious and time consuming and therefore not amenable to experiments aimed at assessing multiple substrates and degradation conditions. As an alternative, cell growth-based assays have been developed, that are, in their conventional format, end-point assays that cannot quantitatively determine relative changes in protein levels. Here we describe a method that faithfully determines changes in protein degradation rates by coupling them to yeast cell-growth kinetics. The method is based on an established selection system where uracil auxotrophy of URA3-deleted yeast cells is rescued by an exogenously expressed reporter protein, comprised of a fusion between the essential URA3 gene and a degradation determinant (degron). The reporter protein is designed so that its synthesis rate is constant whilst its degradation rate is determined by the degron. As cell growth in uracil-deficient medium is proportional to the relative levels of Ura3, growth kinetics are entirely dependent on the reporter protein degradation. This method accurately measures changes in intracellular protein degradation kinetics. It was applied to: (a) Assessing the relative contribution of known ubiquitin-conjugating factors to proteolysis (b) E2 conjugating enzyme structure-function analyses (c) Identification and characterization of novel degrons. Application of the degron-URA3-based system transcends the protein degradation field, as it can also be adapted to monitoring changes of protein levels associated with functions of other cellular pathways.
Cellular Biology, Issue 93, Protein Degradation, Ubiquitin, Proteasome, Baker's Yeast, Growth kinetics, Doubling time
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas
Authors: Jaana Mannik, Alex Meyers, Paul Dalhaimer.
Institutions: University of Tennessee, University of Tennessee.
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method - density gradient centrifugation - is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Bioengineering, Issue 86, Lipid droplet, lipid body, fat body, oil body, Yeast, placenta, placental villous cells, isolation, purification, density gradient centrifugation
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
Expression of Recombinant Cellulase Cel5A from Trichoderma reesei in Tobacco Plants
Authors: Megan Garvey, Johannes Klinger, Holger Klose, Rainer Fischer, Ulrich Commandeur.
Institutions: RWTH Aachen University, Fraunhofer Institute for Molecular Biology and Applied Ecology.
Cellulose degrading enzymes, cellulases, are targets of both research and industrial interests. The preponderance of these enzymes in difficult-to-culture organisms, such as hyphae-building fungi and anaerobic bacteria, has hastened the use of recombinant technologies in this field. Plant expression methods are a desirable system for large-scale production of enzymes and other industrially useful proteins. Herein, methods for the transient expression of a fungal endoglucanase, Trichoderma reesei Cel5A, in Nicotiana tabacum are demonstrated. Successful protein expression is shown, monitored by fluorescence using an mCherry-enzyme fusion protein. Additionally, a set of basic tests are used to examine the activity of transiently expressed T. reesei Cel5A, including SDS-PAGE, Western blotting, zymography, as well as fluorescence and dye-based substrate degradation assays. The system described here can be used to produce an active cellulase in a short time period, so as to assess the potential for further production in plants through constitutive or inducible expression systems.
Environmental Sciences, Issue 88, heterologous expression, endoplasmic reticulum, endoglucanase, cellulose, glycosyl-hydrolase, fluorescence, cellulase, Trichoderma reesei, tobacco plants
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model
Authors: Stefanie Grafmüller, Pius Manser, Harald F. Krug, Peter Wick, Ursula von Mandach.
Institutions: University Hospital Zurich, EMPA Swiss Federal Laboratories for Materials Testing and Research, University of Bern.
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Biomedical Engineering, Issue 76, Medicine, Bioengineering, Anatomy, Physiology, Molecular Biology, Biochemistry, Biophysics, Pharmacology, Obstetrics, Nanotechnology, Placenta, Pharmacokinetics, Nanomedicine, humans, ex vivo perfusion, perfusion, biological barrier, xenobiotics, nanomaterials, clinical model
Play Button
Mouse Islet of Langerhans Isolation using a Combination of Purified Collagenase and Neutral Protease
Authors: Natalie D. Stull, Andrew Breite, Robert McCarthy, Sarah A. Tersey, Raghavendra G. Mirmira.
Institutions: Indiana University School of Medicine, VITACYTE, LLC, Indiana University School of Medicine, Indiana University School of Medicine.
The interrogation of beta cell gene expression and function in vitro has squarely shifted over the years from the study of rodent tumorigenic cell lines to the study of isolated rodent islets. Primary islets offer the distinct advantage that they more faithfully reflect the biology of intracellular signaling pathways and secretory responses. Whereas the method of islet isolation using tissue dissociating enzyme (TDE) preparations has been well established in many laboratories1-4, variations in the consistency of islet yield and quality from any given rodent strain limit the extent and feasibility of primary islet studies. These variations often occur as a result of the crude partially purified TDEs used in the islet isolation procedure; TDEs frequently exhibit lot-to-lot variations in activity and often require adjustments to the dose of enzyme used. A small number of reports have used purified TDEs for rodent cell isolations5, 6, but the practice is not widespread despite the routine use and advantages of purified TDEs for human islet isolations. In collaboration with VitaCyte, LLC (Indianapolis, IN), we developed a modified mouse islet isolation protocol based on that described by Gotoh7, 8, in which the TDEs are perfused directly into the pancreatic duct of mice, followed by crude tissue fractionation through a Histopaque gradient9, and isolation of purified islets. A significant difference in our protocol is the use of purified collagenase (CIzyme MA) and neutral protease (CIzyme BP) combination. The collagenase was characterized by the use of a6 fluorescence collagen degrading activity (CDA) assay that utilized fluorescently labeled soluble calf skin fibrils as substrate6. This substrate is more predictive of the kinetics of collagen degradation in the tissue matrix because it relies on native collagen as the substrate. The protease was characterized with a sensitive fluorescent kinetic assay10. Utilizing these improved assays along with more traditional biochemical analysis enable the TDE to be manufactured more consistently, leading to improved performance consistency between lots. The protocol described in here was optimized for maximal islet yield and optimal islet morphology using C57BL/6 mice. During the development of this protocol, several combinations of collagenase and neutral proteases were evaluated at different concentrations, and the final ratio of collagenase:neutral protease of 35:10 represents enzyme performance comparable to Sigma Type XI. Because significant variability in average islet yields from different strains of rats and mice have been reported, additional modifications of the TDE composition should be made to improve the yield and quality of islets recovered from different species and strains.
Cellular Biology, Issue 67, Islet, collagenase, mouse, insulin, fluorescence
Play Button
Isolation and Analysis of Hematopoietic Stem Cells from the Placenta
Authors: Christos Gekas, Katrin E. Rhodes, Hanna K. A. Mikkola.
Institutions: University of California, Los Angeles.
Hematopoietic stem cells (HSCs) have the ability to self-renew and generate all cell types of the blood lineages throughout the lifetime of an individual. All HSCs emerge during embryonic development, after which their pool size is maintained by self-renewing cell divisions. Identifying the anatomical origin of HSCs and the critical developmental events regulating the process of HSC development has been complicated as many anatomical sites participate during fetal hematopoiesis. Recently, we identified the placenta as a major hematopoietic organ where HSCs are generated and expanded in unique microenvironmental niches (Gekas, et al 2005, Rhodes, et al 2008). Consequently, the placenta is an important source of HSCs during their emergence and initial expansion. In this article, we show dissection techniques for the isolation of murine placenta from E10.5 and E12.5 embryos, corresponding to the developmental stages of initiation of HSCs and the peak in the size of the HSC pool in the placenta, respectively. In addition, we present an optimized protocol for enzymatic and mechanical dissociation of placental tissue into single-cell suspension for use in flow cytometry or functional assays. We have found that use of collagenase for single-cell suspension of placenta gives sufficient yields of HSCs. An important factor affecting HSC yield from the placenta is the degree of mechanical dissociation prior to, and duration of, enzymatic treatment. We also provide a protocol for the preparation of fixed-frozen placental tissue sections for the visualization of developing HSCs by immunohistochemistry in their precise cellular niches. As hematopoietic specific antigens are not preserved during preparation of paraffin embedded sections, we routinely use fixed frozen sections for localizing placental HSCs and progenitors.
Cell Biology, Issue 16, hematopoietic stem cell (HSC), placenta, fetal, dissection, collagenase, fixed-frozen sections, immunohistochemistry
Play Button
Split-Ubiquitin Based Membrane Yeast Two-Hybrid (MYTH) System: A Powerful Tool For Identifying Protein-Protein Interactions
Authors: Jamie Snider, Saranya Kittanakom, Jasna Curak, Igor Stagljar.
Institutions: University of Toronto, University of Toronto, University of Toronto.
The fundamental biological and clinical importance of integral membrane proteins prompted the development of a yeast-based system for the high-throughput identification of protein-protein interactions (PPI) for full-length transmembrane proteins. To this end, our lab developed the split-ubiquitin based Membrane Yeast Two-Hybrid (MYTH) system. This technology allows for the sensitive detection of transient and stable protein interactions using Saccharomyces cerevisiae as a host organism. MYTH takes advantage of the observation that ubiquitin can be separated into two stable moieties: the C-terminal half of yeast ubiquitin (Cub) and the N-terminal half of the ubiquitin moiety (Nub). In MYTH, this principle is adapted for use as a 'sensor' of protein-protein interactions. Briefly, the integral membrane bait protein is fused to Cub which is linked to an artificial transcription factor. Prey proteins, either in individual or library format, are fused to the Nub moiety. Protein interaction between the bait and prey leads to reconstitution of the ubiquitin moieties, forming a full-length 'pseudo-ubiquitin' molecule. This molecule is in turn recognized by cytosolic deubiquitinating enzymes, resulting in cleavage of the transcription factor, and subsequent induction of reporter gene expression. The system is highly adaptable, and is particularly well-suited to high-throughput screening. It has been successfully employed to investigate interactions using integral membrane proteins from both yeast and other organisms.
Cellular Biology, Issue 36, protein-protein interaction, membrane, split-ubiquitin, yeast, library screening, Y2H, yeast two-hybrid, MYTH
Play Button
Detection of Functional Matrix Metalloproteinases by Zymography
Authors: Xueyou Hu, Christine Beeton.
Institutions: Baylor College of Medicine.
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease1-6. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle7-10. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel11. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary structure, necessary for enzymatic activity. The gel is then placed in a developing buffer designed to allow the protease to digest its substrate. The developing buffer also contains p-aminophenylmercuric acetate (APMA) to activate the non-proteolytic pro-MMPs into active MMPs. The next step consists of staining the substrate (gelatin in our example). After washing the excess dye off the gel, areas of protease digestion appear as clear bands. The clearer the band, the more concentrated the protease it contains. Band staining intensity can then be determined by densitometry, using a software such as ImageJ, allowing for sample comparison.
Basic Protocols, Issue 45, Protease, enzyme, electrophoresis, gelatin, casein, fibrin
Play Button
Isolation of Primary Mouse Trophoblast Cells and Trophoblast Invasion Assay
Authors: Kathleen A. Pennington, Jessica M. Schlitt, Laura C. Schulz.
Institutions: University of Missouri.
The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al.1, in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation2-3. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 74. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro5-6. The invaded cells are analyzed by immunocytochemistry and stained for counting.
Developmental Biology, Issue 59, placenta, primary trophoblast cells, mouse, invasion assay, matrigel
Play Button
Engineering a Bilayered Hydrogel to Control ASC Differentiation
Authors: Shanmugasundaram Natesan, David O. Zamora, Laura J. Suggs, Robert J. Christy.
Institutions: United States Army Institute of Surgical Research, The University of Texas at Austin.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
Bioengineering, Issue 63, Biomedical Engineering, Tissue Engineering, chitosan, microspheres, collagen, hydrogel, PEG fibrin, cell delivery, adipose-derived stem cells, ASC, CSM
Play Button
Isolation of Human Umbilical Arterial Smooth Muscle Cells (HUASMC)
Authors: Maximiano P. Ribeiro, Ricardo Relvas, Samuel Chiquita, Ilídio J. Correia.
Institutions: Universidade da Beira Interior.
The human umbilical cord (UC) is a biological sample that can be easily obtained just after birth. This biological sample is, most of the time, discarded and their collection does not imply any added risk to the newborn or mother s health. Moreover no ethical concerns are raised. The UC is composed by one vein and two arteries from which both endothelial cells (ECs) 1 and smooth muscle cells (SMCs) 2, two of the main cellular components of blood vessels, can be isolated. In this project the SMCs were obtained after enzymatic treatment of the UC arteries accordingly the experimental procedure previously described by Jaffe et al 3. After cell isolation they were kept in t-flash with DMEM-F12 supplemented with 5% of fetal bovine serum and were cultured for several passages. Cells maintained their morphological and other phenotypic characteristics in the different generations. The aim of this study was to isolate smooth muscle cells in order to use them as models for future assays with constrictor drugs, isolate and structurally characterize L-type calcium channels, to study cellular and molecular aspects of the vascular function 4 and to use them in tissue engineering.
Cellular Biology, Issue 41, Human Cells, Umbilical Cord, Tissue Engineering, Cell Culture
Play Button
Detection of Protein Ubiquitination
Authors: Yeun Su Choo, Zhuohua Zhang.
Institutions: The Sanford Burnham Institute for Medical Research.
Ubiquitination, the covalent attachment of the polypeptide ubiquitin to target proteins, is a key posttranslational modification carried out by a set of three enzymes. They include ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3. Unlike to E1 and E2, E3 ubiquitin ligases display substrate specificity. On the other hand, numerous deubiquitylating enzymes have roles in processing polyubiquitinated proteins. Ubiquitination can result in change of protein stability, cellular localization, and biological activity. Mutations of genes involved in the ubiquitination/deubiquitination pathway or altered ubiquitin system function are associated with many different human diseases such as various types of cancer, neurodegeneration, and metabolic disorders. The detection of altered or normal ubiquitination of target proteins may provide a better understanding on the pathogenesis of these diseases.  Here, we describe protocols to detect protein ubiquitination in cultured cells in vivo and test tubes in vitro. These protocols are also useful to detect other ubiquitin-like small molecule modification such as sumolyation and neddylation.
Cell Biology, Biochemistry, Issue 30, ubiquitination, cultured cell, in vitro system, immunoprecipitation, immunoblotting, ubiquitin, posttranslational modification
Play Button
From MEFs to Matrigel I: Passaging hESCs in the Presence of MEFs
Authors: Jin Zhang, Ivan Khvorostov, Michael Teitell.
Institutions: University of California, Los Angeles.
This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells.
Cellular Biology, Issue 16, human embryonic stem cell (hESC), mouse embryonic fibroblast (MEF), matrigel, conditioned-media, feeder cell, pluripotency
Play Button
Murine Pancreatic Islet Isolation
Authors: Gregory L. Szot, Pavel Koudria, Jeffrey A. Bluestone.
Institutions: University of California, San Francisco - UCSF.
Issue 7, Immunology, Pancreatic Islets, Cell Culture, Diabetes, Ficoll Gradient
Play Button
Isolation of Human Umbilical Vein Endothelial Cells (HUVEC)
Authors: Jaeger Davis, Steve P. Crampton, Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Angiogenesis is a complex multi-step process, where in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels often do not resemble vessels in vivo. Here we demonstrate an optimized in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis, and importantly the vessels display patent intercellular lumens surrounded by polarized EC. Vessels can be easily observed by phase-contrast and time-lapse microscopy, and recovered in pure form for downstream applications.
Cellular Biology, Issue 3, angiogenesis, endothelial, HUVEC, umbilical
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.