JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Potential roles of CCR5(+) CCR6(+) dendritic cells induced by nasal ovalbumin plus Flt3 ligand expressing adenovirus for mucosal IgA responses.
PUBLISHED: 02-26-2013
We assessed the role of CCR5(+)/CCR6(+)/CD11b(+)/CD11c(+) dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5(+)/CCR6(+)/CD11b(+)/CD11c(+) DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b(+)/CD11c(+) DCs were markedly decreased in both CCR5(-/-) and CCR6(-/-) mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5(-/-) or CD11c-DTR and CCR6(-/-) mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5(+)CCR6(+) DCs play an important role in the induction of Ag-specific SIgA Ab responses.
Authors: Emily D. Cisney, Stefan Fernandez, Shannan I. Hall, Gale A. Krietz, Robert G. Ulrich.
Published: 08-01-2012
The nasopharyngeal-associated lymphoreticular tissues (NALT) found in humans, rodents, and other mammals, contribute to immunity in the nasal sinuses1-3. The NALT are two parallel bell-shaped structures located in the nasal passages above the hard palate, and are usually considered to be secondary components of the mucosal-associated lymphoid system4-6. Located within the NALT are discrete compartments of B and T lymphocytes interspersed with antigen-presenting dendritic cells4,7,8. These cells are surrounded by an epithelial cell layer intercalated with M-cells that are responsible for antigen retrieval from the mucosal surfaces of the air passages9,10. Naive lymphocytes circulating through the NALT are poised to respond to first encounters with respiratory pathogens7. While NALT disappear in humans by the age of two years, the Waldeyer's Ring and similarly structured lymphatic organs continue to persist throughout life6. In contrast to humans, mice retain NALT throughout life, thus providing a convenient animal model for the study of immune responses originating within the nasal sinuses11. Cultures of single-cell suspensions of NALT are not practical due to low yields of mononuclear cells. However, NALT biology can be examined by ex vivo culturing of the intact organ, and this method has the additional advantage of maintaining the natural tissue structure. For in vivo studies, genetic knockout models presenting defects limited to NALT are not currently available due to a poor understanding of the developmental pathway. For example, while lymphotoxin-α knockout mice have atrophied NALT, the Peyer's patches, peripheral lymph nodes, follicular dendritic cells and other lymphoid tissues are also altered in these genetically manipulated mice12,13. As an alternative to gene knockout mice, surgical ablation permanently eliminates NALT from the nasal passage without affecting other tissues. The resulting mouse model has been used to establish relationships between NALT and immune responses to vaccines1,3. Serial collection of serum, saliva, nasal washes and vaginal secretions is necessary for establishing the basis of host responses to vaccination, while immune responses originating directly from NALT can be confirmed by tissue culture. The following procedures outline the surgeries, tissue culture and sample collection necessary to examine local and systemic humoral immune responses to intranasal (IN) vaccination.
18 Related JoVE Articles!
Play Button
Assessing the Development of Murine Plasmacytoid Dendritic Cells in Peyer's Patches Using Adoptive Transfer of Hematopoietic Progenitors
Authors: Haiyan S. Li, Stephanie S. Watowich.
Institutions: The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences.
This protocol details a method to analyze the ability of purified hematopoietic progenitors to generate plasmacytoid dendritic cells (pDC) in intestinal Peyer's patch (PP). Common dendritic cell progenitors (CDPs, lin- c-kitlo CD115+ Flt3+) were purified from the bone marrow of C57BL6 mice by FACS and transferred to recipient mice that lack a significant pDC population in PP; in this case, Ifnar-/- mice were used as the transfer recipients. In some mice, overexpression of the dendritic cell growth factor Flt3 ligand (Flt3L) was enforced prior to adoptive transfer of CDPs, using hydrodynamic gene transfer (HGT) of Flt3L-encoding plasmid. Flt3L overexpression expands DC populations originating from transferred (or endogenous) hematopoietic progenitors. At 7-10 days after progenitor transfer, pDCs that arise from the adoptively transferred progenitors were distinguished from recipient cells on the basis of CD45 marker expression, with pDCs from transferred CDPs being CD45.1+ and recipients being CD45.2+. The ability of transferred CDPs to contribute to the pDC population in PP and to respond to Flt3L was evaluated by flow cytometry of PP single cell suspensions from recipient mice. This method may be used to test whether other progenitor populations are capable of generating PP pDCs. In addition, this approach could be used to examine the role of factors that are predicted to affect pDC development in PP, by transferring progenitor subsets with an appropriate knockdown, knockout or overexpression of the putative developmental factor and/or by manipulating circulating cytokines via HGT. This method may also allow analysis of how PP pDCs affect the frequency or function of other immune subsets in PPs. A unique feature of this method is the use of Ifnar-/- mice, which show severely depleted PP pDCs relative to wild type animals, thus allowing reconstitution of PP pDCs in the absence of confounding effects from lethal irradiation.
Immunology, Issue 85, hematopoiesis, dendritic cells, Peyer's patch, cytokines, adoptive transfer
Play Button
Characterization of Inflammatory Responses During Intranasal Colonization with Streptococcus pneumoniae
Authors: Alicja Puchta, Chris P. Verschoor, Tanja Thurn, Dawn M. E. Bowdish.
Institutions: McMaster University .
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite to invasion to the lungs or bloodstream1. This organism is capable of colonizing the mucosal surface of the nasopharynx, where it can reside, multiply and eventually overcome host defences to invade to other tissues of the host. Establishment of an infection in the normally lower respiratory tract results in pneumonia. Alternatively, the bacteria can disseminate into the bloodstream causing bacteraemia, which is associated with high mortality rates2, or else lead directly to the development of pneumococcal meningitis. Understanding the kinetics of, and immune responses to, nasopharyngeal colonization is an important aspect of S. pneumoniae infection models. Our mouse model of intranasal colonization is adapted from human models3 and has been used by multiple research groups in the study of host-pathogen responses in the nasopharynx4-7. In the first part of the model, we use a clinical isolate of S. pneumoniae to establish a self-limiting bacterial colonization that is similar to carriage events in human adults. The procedure detailed herein involves preparation of a bacterial inoculum, followed by the establishment of a colonization event through delivery of the inoculum via an intranasal route of administration. Resident macrophages are the predominant cell type in the nasopharynx during the steady state. Typically, there are few lymphocytes present in uninfected mice8, however mucosal colonization will lead to low- to high-grade inflammation (depending on the virulence of the bacterial species and strain) that will result in an immune response and the subsequent recruitment of host immune cells. These cells can be isolated by a lavage of the tracheal contents through the nares, and correlated to the density of colonization bacteria to better understand the kinetics of the infection.
Immunology, Issue 83, Streptococcus pneumoniae, Nasal lavage, nasopharynx, murine, flow cytometry, RNA, Quantitative PCR, recruited macrophages, neutrophils, T-cells, effector cells, intranasal colonization
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
Play Button
Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface
Authors: Loretta Müller, Luisa E. Brighton, Johnny L. Carson, William A. Fischer II, Ilona Jaspers.
Institutions: The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.
Cellular Biology, Issue 80, Epithelium, Cell culture models, ciliated, air pollution, co-culture models, nasal epithelium
Play Button
In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection
Authors: Guorui Xie, Melissa C. Whiteman, Jason A. Wicker, Alan D.T. Barrett, Tian Wang.
Institutions: The University of Texas Medical Branch, The University of Texas Medical Branch, The University of Texas Medical Branch.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.
Immunology, Issue 93, West Nile Virus, Dendritic cells, T cells, cytokine, proliferation, in vitro
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Isolation, Processing and Analysis of Murine Gingival Cells
Authors: Gabriel Mizraji, Hadas Segev, Asaf Wilensky, Avi-Hai Hovav.
Institutions: Hebrew University - Hadassah Medical Center, Hebrew University - Hadassah Medical Center.
We have developed a technique to precisely isolate and process murine gingival tissue for flow cytometry and molecular studies. The gingiva is a unique and important tissue to study immune mechanisms because it is involved in host immune response against oral biofilm that might cause periodontal diseases. Furthermore, the close proximity of the gingiva to alveolar bone tissue enables also studying bone remodeling under inflammatory conditions. Our method yields large amount of immune cells that allows analysis of even rare cell populations such as Langerhans cells and T regulatory cells as we demonstrated previously 1. Employing mice to study local immune responses involved in alveolar bone loss during periodontal diseases is advantageous because of the availability of various immunological and experimental tools. Nevertheless, due to their small size and the relatively inconvenient access to the murine gingiva, many studies avoided examination of this critical tissue. The method described in this work could facilitate gingival analysis, which hopefully will increase our understating on the oral immune system and its role during periodontal diseases.
Immunology, Issue 77, Infection, Medicine, Cellular Biology, Molecular Biology, Anatomy, Physiology, Periodontology, Gingiva, Periodontitis, Flow cytometry, mice, oral mucosa, gingival cells, animal model
Play Button
Isolating And Immunostaining Lymphocytes and Dendritic Cells from Murine Peyer's Patches
Authors: Magdia De Jesus, Sarita Ahlawat, Nicholas J. Mantis.
Institutions: New York State Department of Health.
Peyer's patches (PPs) are integral components of the gut-associated lymphoid tissues (GALT) and play a central role in intestinal immunosurveillance and homeostasis. Particulate antigens and microbes in the intestinal lumen are continuously sampled by PP M cells in the follicle-associated epithelium (FAE) and transported to an underlying network of dendritic cells (DCs), macrophages, and lymphocytes. In this article, we describe protocols in which murine PPs are (i) dissociated into single cell suspensions and subjected to flow cytometry and (ii) prepared for cryosectioning and immunostaining. For flow cytometry, PPs are mechanically dissociated and then filtered through 70 μm membranes to generate single cell suspensions free of epithelial cells and large debris. Starting with 20-25 PPs (from four mice), this quick and reproducible method yields a population of >2.5 x 106 cells with >90% cell viability. For cryosectioning, freshly isolated PPs are immersed in Optimal Cutting Temperature (OCT) medium, snap-frozen in liquid nitrogen, and then sectioned using a cryomicrotome. Tissue sections (5-12 μm) are air-dried, fixed with acetone or methanol, and then subjected to immunolabeling.
Infection, Issue 73, Infectious Diseases, Immunology, Microbiology, Medicine, Cellular Biology, Surgery, Bacterial Infections and Mycoses, Immune System Diseases, Digestive System Diseases, Peyer's patch, intestine, Mucosal, lymphoid tissue, lymphocyte, Dendritic, flow cytometry, cryosectioning, oral gavage, immunostaining, isolation, cell culture, animal model
Play Button
Preparation of Tumor Antigen-loaded Mature Dendritic Cells for Immunotherapy
Authors: Rachel Lubong Sabado, Elizabeth Miller, Meredith Spadaccia, Isabelita Vengco, Farah Hasan, Nina Bhardwaj.
Institutions: NYU Langone Medical Center, NYU Langone Medical Center.
While clinical studies have established that antigen-loaded DC vaccines are safe and promising therapy for tumors 1, their clinical efficacy remains to be established. The method described below, prepared in accordance with Good Manufacturing Process (GMP) guidelines, is an optimization of the most common ex vivo preparation method for generating large numbers of DCs for clinical studies 2. Our method utilizes the synthetic TLR 3 agonist Polyinosinic-Polycytidylic Acid-poly-L-lysine Carboxymethylcellulose (Poly-ICLC) to stimulate the DCs. Our previous study established that Poly-ICLC is the most potent individual maturation stimulus for human DCs as assessed by an upregulation of CD83 and CD86, induction of interleukin-12 (IL-12), tumor necrosis factor (TNF), interferon gamma-induced protein 10 (IP-10), interleukmin 1 (IL-1), and type I interferons (IFN), and minimal interleukin 10 (IL-10) production. DCs are differentiated from frozen peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis. PBMCs are isolated by Ficoll gradient centrifugation and frozen in aliquots. On Day 1, PBMCs are thawed and plated onto tissue culture flasks to select for monocytes which adhere to the plastic surface after 1-2 hr incubation at 37 °C in the tissue culture incubator. After incubation, the lymphocytes are washed off and the adherent monocytes are cultured for 5 days in the presence of interleukin-4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate to immature DCs. On Day 6, immature DCs are pulsed with the keyhole limpet hemocyanin (KLH) protein which serves as a control for the quality of the vaccine and may boost the immunogenicity of the vaccine 3. The DCs are stimulated to mature, loaded with peptide antigens, and incubated overnight. On Day 7, the cells are washed, and frozen in 1 ml aliquots containing 4 - 20 x 106 cells using a controlled-rate freezer. Lot release testing for the batches of DCs is performed and must meet minimum specifications before they are injected into patients.
Cancer Biology, Issue 78, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Dendritic Cells, Immunotherapy, dendritic cell, immunotherapy, vaccine, cell, isolation, flow cytometry, cell culture, clinical techniques
Play Button
Isolation and Characterization of Dendritic Cells and Macrophages from the Mouse Intestine
Authors: Duke Geem, Oscar Medina-Contreras, Wooki Kim, Clifton S. Huang, Timothy L. Denning.
Institutions: Emory University, Emory University.
Within the intestine reside unique populations of innate and adaptive immune cells that are involved in promoting tolerance towards commensal flora and food antigens while concomitantly remaining poised to mount inflammatory responses toward invasive pathogens1,2. Antigen presenting cells, particularly DCs and macrophages, play critical roles in maintaining intestinal immune homeostasis via their ability to sense and appropriately respond to the microbiota3-14. Efficient isolation of intestinal DCs and macrophages is a critical step in characterizing the phenotype and function of these cells. While many effective methods of isolating intestinal immune cells, including DCs and macrophages, have been described6,10,15-24, many rely upon long digestions times that may negatively influence cell surface antigen expression, cell viability, and/or cell yield. Here, we detail a methodology for the rapid isolation of large numbers of viable, intestinal DCs and macrophages. Phenotypic characterization of intestinal DCs and macrophages is carried out by directly staining isolated intestinal cells with specific fluorescence-labeled monoclonal antibodies for multi-color flow cytometric analysis. Furthermore, highly pure DC and macrophage populations are isolated for functional studies utilizing CD11c and CD11b magnetic-activated cell sorting beads followed by cell sorting.
Immunology, Issue 63, intestine, immunology, APCs, dendritic cells, macrophages, cell culture
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Isolation of Mouse Lung Dendritic Cells
Authors: Wallissa Lancelin, Antonieta Guerrero-Plata.
Institutions: Louisiana State University .
Lung dendritic cells (DC) play a fundamental role in sensing invading pathogens 1,2 as well as in the control of tolerogenic responses 3 in the respiratory tract. At least three main subsets of lung dendritic cells have been described in mice: conventional DC (cDC) 4, plasmacytoid DC (pDC) 5 and the IFN-producing killer DC (IKDC) 6,7. The cDC subset is the most prominent DC subset in the lung 8. The common marker known to identify DC subsets is CD11c, a type I transmembrane integrin (β2) that is also expressed on monocytes, macrophages, neutrophils and some B cells 9. In some tissues, using CD11c as a marker to identify mouse DC is valid, as in spleen, where most CD11c+ cells represent the cDC subset which expresses high levels of the major histocompatibility complex class II (MHC-II). However, the lung is a more heterogeneous tissue where beside DC subsets, there is a high percentage of a distinct cell population that expresses high levels of CD11c bout low levels of MHC-II. Based on its characterization and mostly on its expression of F4/80, an splenic macrophage marker, the CD11chiMHC-IIlo lung cell population has been identified as pulmonary macrophages 10 and more recently, as a potential DC precursor 11. In contrast to mouse pDC, the study of the specific role of cDC in the pulmonary immune response has been limited due to the lack of a specific marker that could help in the isolation of these cells. Therefore, in this work, we describe a procedure to isolate highly purified mouse lung cDC. The isolation of pulmonary DC subsets represents a very useful tool to gain insights into the function of these cells in response to respiratory pathogens as well as environmental factors that can trigger the host immune response in the lung.
Immunology, Issue 57, Lung, dendritic cells, classical, conventional, isolation, mouse, innate immunity, pulmonary
Play Button
Standardized Preparation of Single-Cell Suspensions from Mouse Lung Tissue using the gentleMACS Dissociator
Authors: Melanie Jungblut, Karen Oeltze, Irene Zehnter, Doris Hasselmann, Andreas Bosio.
Institutions: Miltenyi Biotec,GmbH.
The preparation of single-cell suspensions from tissues is an important prerequisite for many experiments in cellular research. The process of dissociating whole organs requires specific parameters in order to obtain a high number of viable cells in a reproducible manner. The gentleMACS Dissociator optimizes this task with a simple, practical protocol. The instrument contains pre-programmed settings that are optimized for the efficient but gentle dissociation of a variety of tissue types, including mouse lungs. In this publication the use of the gentleMACS Dissociator on lung tissue derived from mice is demonstrated.
Cell Biology, Issue 29, cell culture, cell dissociation, lung, mouse
Play Button
Generation of Bone Marrow Derived Murine Dendritic Cells for Use in 2-photon Imaging
Authors: Melanie P. Matheu, Debasish Sen, Michael D Cahalan, Ian Parker.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Several methods for the preparation of murine dendritic cells can be found in the literature. Here, we present a method that produces greater than 85% CD11c high dendritic cells in culture that home to the draining lymph node after subcutaneous injection and present antigen to antigen specific T cells (see video). Additionally, we use Essen Instruments Incucyte to track dendritic cell maturation, where, at day 10, the morphology of the cultured cells is typical of a mature dendritic cell and <85% of cells are CD11chigh. The study of antigen presentation in peripheral lymph nodes by 2-photon imaging revealed that there are three distinct phases of dendritic cell and T cell interaction1, 2. Phase I consists of brief serial contacts between highly motile antigen specific T cells and antigen carrying dendritic cells1, 2. Phase two is marked by prolonged contacts between antigen-specific T cell and antigen bearing dendritic cells1, 2. Finally, phase III is characterized by T cells detaching from dendritic cells, regaining motility and beginning to divide1, 2. This is one example of the type of antigen-specific interactions that can be analyzed by two-photon imaging of antigen-loaded cell tracker dye-labeled dendritic cells.
Immunology, Issue 17, dendritic cells, mouse, bone marrow, 2-photon imaging, cell culture
Play Button
Culture of myeloid dendritic cells from bone marrow precursors
Authors: Jeanette Boudreau, Sandeep Koshy, Derek Cummings, Yonghong Wan.
Institutions: McMaster University, McMaster University, University of Waterloo.
Myeloid dendritic cells (DCs) are frequently used to study the interactions between innate and adaptive immune mechanisms and the early response to infection. Because these are the most potent antigen presenting cells, DCs are being increasingly used as a vaccine vector to study the induction of antigen-specific immune responses. In this video, we demonstrate the procedure for harvesting tibias and femurs from a donor mouse, processing the bone marrow and differentiating DCs in vitro. The properties of DCs change following stimulation: immature dendritic cells are potent phagocytes, whereas mature DCs are capable of antigen presentation and interaction with CD4+ and CD8+ T cells. This change in functional activity corresponds with the upregulation of cell surface markers and cytokine production. Many agents can be used to mature DCs, including cytokines and toll-like receptor ligands. In this video, we demonstrate flow cytometric comparisons of expression of two co-stimulatory molecules, CD86 and CD40, and the cytokine, IL-12, following overnight stimulation with CpG or mock treatment. After differentiation, DCs can be further manipulated for use as a vaccine vector or to generate antigen-specific immune responses by in vitro pulsing using peptides or proteins, or transduced using recombinant viral vectors.
Immunology, Issue 17, dendritic cells, GM-CSF, culture, bone marrow
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.