JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.
PUBLISHED: 02-28-2013
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation.
Computation in the brain relies on neurons responding appropriately to their synaptic inputs. Neurons differ in their complement and distribution of membrane ion channels that determine how they respond to synaptic inputs. However, the relationship between these cellular properties and neuronal function in behaving animals is not well understood. One approach to this problem is to investigate topographically organized neural circuits in which the position of individual neurons maps onto information they encode or computations they carry out1. Experiments using this approach suggest principles for tuning of synaptic responses underlying information encoding in sensory and cognitive circuits2,3. The topographical organization of spatial representations along the dorsal-ventral axis of the medial entorhinal cortex (MEC) provides an opportunity to establish relationships between cellular mechanisms and computations important for spatial cognition. Neurons in layer II of the rodent MEC encode location using grid-like firing fields4-6. For neurons found at dorsal positions in the MEC the distance between the individual firing fields that form a grid is on the order of 30 cm, whereas for neurons at progressively more ventral positions this distance increases to greater than 1 m. Several studies have revealed cellular properties of neurons in layer II of the MEC that, like the spacing between grid firing fields, also differ according to their dorsal-ventral position, suggesting that these cellular properties are important for spatial computation2,7-10. Here we describe procedures for preparation and electrophysiological recording from brain slices that maintain the dorsal-ventral extent of the MEC enabling investigation of the topographical organization of biophysical and anatomical properties of MEC neurons. The dorsal-ventral position of identified neurons relative to anatomical landmarks is difficult to establish accurately with protocols that use horizontal slices of MEC7,8,11,12, as it is difficult to establish reference points for the exact dorsal-ventral location of the slice. The procedures we describe enable accurate and consistent measurement of location of recorded cells along the dorsal-ventral axis of the MEC as well as visualization of molecular gradients2,10. The procedures have been developed for use with adult mice (> 28 days) and have been successfully employed with mice up to 1.5 years old. With adjustments they could be used with younger mice or other rodent species. A standardized system of preparation and measurement will aid systematic investigation of the cellular and microcircuit properties of this area.
23 Related JoVE Articles!
Play Button
Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons
Authors: Christian Kleinhans, Karl W. Kafitz, Christine R. Rose.
Institutions: Heinrich Heine University Düsseldorf.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.
Neuroscience, Issue 92, Neurosciences, two-photon microscopy, patch-clamp, UV-flash photolysis, mouse, hippocampus, caged compounds, glutamate, brain slice, dendrite, sodium signals
Play Button
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Authors: James J. Jun, André Longtin, Leonard Maler.
Institutions: University of Ottawa, University of Ottawa, University of Ottawa.
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.
Neuroscience, Issue 85, animal tracking, weakly electric fish, electric organ discharge, underwater infrared imaging, automated image tracking, sensory isolation chamber, exploratory behavior
Play Button
A Comprehensive Protocol for Manual Segmentation of the Medial Temporal Lobe Structures
Authors: Matthew Moore, Yifan Hu, Sarah Woo, Dylan O'Hearn, Alexandru D. Iordan, Sanda Dolcos, Florin Dolcos.
Institutions: University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign.
The present paper describes a comprehensive protocol for manual tracing of the set of brain regions comprising the medial temporal lobe (MTL): amygdala, hippocampus, and the associated parahippocampal regions (perirhinal, entorhinal, and parahippocampal proper). Unlike most other tracing protocols available, typically focusing on certain MTL areas (e.g., amygdala and/or hippocampus), the integrative perspective adopted by the present tracing guidelines allows for clear localization of all MTL subregions. By integrating information from a variety of sources, including extant tracing protocols separately targeting various MTL structures, histological reports, and brain atlases, and with the complement of illustrative visual materials, the present protocol provides an accurate, intuitive, and convenient guide for understanding the MTL anatomy. The need for such tracing guidelines is also emphasized by illustrating possible differences between automatic and manual segmentation protocols. This knowledge can be applied toward research involving not only structural MRI investigations but also structural-functional colocalization and fMRI signal extraction from anatomically defined ROIs, in healthy and clinical groups alike.
Neuroscience, Issue 89, Anatomy, Segmentation, Medial Temporal Lobe, MRI, Manual Tracing, Amygdala, Hippocampus, Perirhinal Cortex, Entorhinal Cortex, Parahippocampal Cortex
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Trace Fear Conditioning in Mice
Authors: Joaquin N. Lugo, Gregory D. Smith, Andrew J. Holley.
Institutions: Baylor University, Baylor University.
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.
Behavior, Issue 85, fear conditioning, learning, trace conditioning, memory, conditioned and unconditioned stimulus, neutral stimulus, amygdala-dependent learning
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Juxtasomal Biocytin Labeling to Study the Structure-function Relationship of Individual Cortical Neurons
Authors: Rajeevan T. Narayanan, Hemanth Mohan, Robin Broersen, Roel de Haan, Anton W. Pieneman, Christiaan P.J. de Kock.
Institutions: VU University Amsterdam.
The cerebral cortex is characterized by multiple layers and many distinct cell-types that together as a network are responsible for many higher cognitive functions including decision making, sensory-guided behavior or memory. To understand how such intricate neuronal networks perform such tasks, a crucial step is to determine the function (or electrical activity) of individual cell types within the network, preferentially when the animal is performing a relevant cognitive task. Additionally, it is equally important to determine the anatomical structure of the network and the morphological architecture of the individual neurons to allow reverse engineering the cortical network. Technical breakthroughs available today allow recording cellular activity in awake, behaving animals with the valuable option of post hoc identifying the recorded neurons. Here, we demonstrate the juxtasomal biocytin labeling technique, which involves recording action potential spiking in the extracellular (or loose-patch) configuration using conventional patch pipettes. The juxtasomal recording configuration is relatively stable and applicable across behavioral conditions, including anesthetized, sedated, awake head-fixed, and even in the freely moving animal. Thus, this method allows linking cell-type specific action potential spiking during animal behavior to reconstruction of the individual neurons and ultimately, the entire cortical microcircuit. In this video manuscript, we show how individual neurons in the juxtasomal configuration can be labeled with biocytin in the urethane-anaesthetized rat for post hoc identification and morphological reconstruction.
Bioengineering, Issue 84, biocytin, juxtasomal, morphology, physiology, action potential, structure-function, histology, reconstruction, neurons, electrophysiological recordings
Play Button
Simultaneous Long-term Recordings at Two Neuronal Processing Stages in Behaving Honeybees
Authors: Martin Fritz Brill, Maren Reuter, Wolfgang Rössler, Martin Fritz Strube-Bloss.
Institutions: University of Würzburg.
In both mammals and insects neuronal information is processed in different higher and lower order brain centers. These centers are coupled via convergent and divergent anatomical connections including feed forward and feedback wiring. Furthermore, information of the same origin is partially sent via parallel pathways to different and sometimes into the same brain areas. To understand the evolutionary benefits as well as the computational advantages of these wiring strategies and especially their temporal dependencies on each other, it is necessary to have simultaneous access to single neurons of different tracts or neuropiles in the same preparation at high temporal resolution. Here we concentrate on honeybees by demonstrating a unique extracellular long term access to record multi unit activity at two subsequent neuropiles1, the antennal lobe (AL), the first olfactory processing stage and the mushroom body (MB), a higher order integration center involved in learning and memory formation, or two parallel neuronal tracts2 connecting the AL with the MB. The latter was chosen as an example and will be described in full. In the supporting video the construction and permanent insertion of flexible multi channel wire electrodes is demonstrated. Pairwise differential amplification of the micro wire electrode channels drastically reduces the noise and verifies that the source of the signal is closely related to the position of the electrode tip. The mechanical flexibility of the used wire electrodes allows stable invasive long term recordings over many hours up to days, which is a clear advantage compared to conventional extra and intracellular in vivo recording techniques.
Neuroscience, Issue 89, honeybee brain, olfaction, extracellular long term recordings, double recordings, differential wire electrodes, single unit, multi-unit recordings
Play Button
The Analysis of Neurovascular Remodeling in Entorhino-hippocampal Organotypic Slice Cultures
Authors: Sophorn Chip, Xinzhou Zhu, Josef P. Kapfhammer.
Institutions: University of Basel, University of Basel.
Ischemic brain injury is among the most common and devastating conditions compromising proper brain function and often leads to persisting functional deficits in the affected patients. Despite intensive research efforts, there is still no effective treatment option available that reduces neuronal injury and protects neurons in the ischemic areas from delayed secondary death. Research in this area typically involves the use of elaborate and problematic animal models. Entorhino-hippocampal organotypic slice cultures challenged with oxygen and glucose deprivation (OGD) are established in vitro models which mimic cerebral ischemia. The novel aspect of this study is that changes of the brain blood vessels are studied in addition to neuronal changes and the reaction of both the neuronal compartment and the vascular compartment can be compared and correlated. The methods presented in this protocol substantially broaden the potential applications of the organotypic slice culture approach. The induction of OGD or hypoxia alone can be applied by rather simple means in organotypic slice cultures and leads to reliable and reproducible damage in the neural tissue. This is in stark contrast to the complicated and problematic animal experiments inducing stroke and ischemia in vivo. By broadening the analysis to include the study of the reaction of the vasculature could provide new ways on how to preserve and restore brain functions. The slice culture approach presented here might develop into an attractive and important tool for the study of ischemic brain injury and might be useful for testing potential therapeutic measures aimed at neuroprotection.
Neurobiology, Issue 92, blood-brain-barrier, neurovascular remodeling, hippocampus, pyramidal cells, excitotoxic, ischemia
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
Play Button
Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography
Authors: Sarah H. Shahmoradian, Mauricio R. Galiano, Chengbiao Wu, Shurui Chen, Matthew N. Rasband, William C. Mobley, Wah Chiu.
Institutions: Baylor College of Medicine, Baylor College of Medicine, University of California at San Diego, Baylor College of Medicine.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.
Neuroscience, Issue 84, Neurons, Cryo-electron Microscopy, Electron Microscope Tomography, Brain, rat, primary neuron culture, morphological assay
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Low-Cost Cryo-Light Microscopy Stage Fabrication for Correlated Light/Electron Microscopy
Authors: David B. Carlson, James E. Evans.
Institutions: University of California Davis.
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.
Cellular Biology, Issue 52, cryo-light microscopy, cryogenic stage, CLEM, cryo-fluorescence, multi-resolution microscopy, cryo-electron microscopy
Play Button
Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
Authors: Jin Y. Huang, Klaus M. Stiefel, Dario A. Protti.
Institutions: University of Sydney , University of Western Sydney, University of Sydney .
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
Neuroscience, Issue 75, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Neurons, Retinal Neurons, Retinal Ganglion Cells, Eye, Retina, Neurosciences, retina, ganglion cells, synaptic conductance, artificial conductance, tetrodotoxin (TTX), patch clamp, dynamic clamp, conductance clamp, electrophysiology, mouse, animal model
Play Button
Optical Recording of Suprathreshold Neural Activity with Single-cell and Single-spike Resolution
Authors: Gayathri Nattar Ranganathan, Helmut J. Koester.
Institutions: The University of Texas at Austin.
Signaling of information in the vertebrate central nervous system is often carried by populations of neurons rather than individual neurons. Also propagation of suprathreshold spiking activity involves populations of neurons. Empirical studies addressing cortical function directly thus require recordings from populations of neurons with high resolution. Here we describe an optical method and a deconvolution algorithm to record neural activity from up to 100 neurons with single-cell and single-spike resolution. This method relies on detection of the transient increases in intracellular somatic calcium concentration associated with suprathreshold electrical spikes (action potentials) in cortical neurons. High temporal resolution of the optical recordings is achieved by a fast random-access scanning technique using acousto-optical deflectors (AODs)1. Two-photon excitation of the calcium-sensitive dye results in high spatial resolution in opaque brain tissue2. Reconstruction of spikes from the fluorescence calcium recordings is achieved by a maximum-likelihood method. Simultaneous electrophysiological and optical recordings indicate that our method reliably detects spikes (>97% spike detection efficiency), has a low rate of false positive spike detection (< 0.003 spikes/sec), and a high temporal precision (about 3 msec) 3. This optical method of spike detection can be used to record neural activity in vitro and in anesthetized animals in vivo3,4.
Neuroscience, Issue 67, functional calcium imaging, spatiotemporal patterns of activity, dithered random-access scanning
Play Button
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Authors: Taruna Ikrar, Nicholas D. Olivas, Yulin Shi, Xiangmin Xu.
Institutions: University of California, Irvine, University of California, Irvine.
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits.
Neuroscience, Issue 56, glutamate uncaging, whole cell recording, GFP, transgenic, interneurons
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat
Authors: Ian Q. Whishaw, Boguslaw P. Gorny.
Institutions: Canadian Centre for Behavioural Neuroscience, University of Lethbridge.
Piloting and dead reckoning navigation strategies use very different cue constellations and computational processes (Darwin, 1873; Barlow, 1964; O’Keefe and Nadel, 1978; Mittelstaedt and Mittelstaedt, 1980; Landeau et al., 1984; Etienne, 1987; Gallistel, 1990; Maurer and Séguinot, 1995). Piloting requires the use of the relationships between relatively stable external (visual, olfactory, auditory) cues, whereas dead reckoning requires the integration of cues generated by self-movement. Animals obtain self-movement information from vestibular receptors, and possibly muscle and joint receptors, and efference copy of commands that generate movement. An animal may also use the flows of visual, auditory, and olfactory stimuli caused by its movements. Using a piloting strategy an animal can use geometrical calculations to determine directions and distances to places in its environment, whereas using an dead reckoning strategy it can integrate cues generated by its previous movements to return to a just left location. Dead reckoning is colloquially called "sense of direction" and "sense of distance." Although there is considerable evidence that the hippocampus is involved in piloting (O’Keefe and Nadel, 1978; O’Keefe and Speakman, 1987), there is also evidence from behavioral (Whishaw et al., 1997; Whishaw and Maaswinkel, 1998; Maaswinkel and Whishaw, 1999), modeling (Samsonovich and McNaughton, 1997), and electrophysiological (O’Mare et al., 1994; Sharp et al., 1995; Taube and Burton, 1995; Blair and Sharp, 1996; McNaughton et al., 1996; Wiener, 1996; Golob and Taube, 1997) studies that the hippocampal formation is involved in dead reckoning. The relative contribution of the hippocampus to the two forms of navigation is still uncertain, however. Ordinarily, it is difficult to be certain that an animal is using a piloting versus a dead reckoning strategy because animals are very flexible in their use of strategies and cues (Etienne et al., 1996; Dudchenko et al., 1997; Martin et al., 1997; Maaswinkel and Whishaw, 1999). The objective of the present video demonstrations was to solve the problem of cue specification in order to examine the relative contribution of the hippocampus in the use of these strategies. The rats were trained in a new task in which they followed linear or polygon scented trails to obtain a large food pellet hidden on an open field. Because rats have a proclivity to carry the food back to the refuge, accuracy and the cues used to return to the home base were dependent variables (Whishaw and Tomie, 1997). To force an animal to use a a dead reckoning strategy to reach its refuge with the food, the rats were tested when blindfolded or under infrared light, a spectral wavelength in which they cannot see, and in some experiments the scent trail was additionally removed once an animal reached the food. To examine the relative contribution of the hippocampus, fimbria–fornix (FF) lesions, which disrupt information flow in the hippocampal formation (Bland, 1986), impair memory (Gaffan and Gaffan, 1991), and produce spatial deficits (Whishaw and Jarrard, 1995), were used.
Neuroscience, Issue 26, Dead reckoning, fimbria-fornix, hippocampus, odor tracking, path integration, spatial learning, spatial navigation, piloting, rat, Canadian Centre for Behavioural Neuroscience
Play Button
Examining Local Network Processing using Multi-contact Laminar Electrode Recording
Authors: Bryan J. Hansen, Sarah Eagleman, Valentin Dragoi.
Institutions: University of Texas , University of Texas .
Cortical layers are ubiquitous structures throughout neocortex1-4 that consist of highly recurrent local networks. In recent years, significant progress has been made in our understanding of differences in response properties of neurons in different cortical layers5-8, yet there is still a great deal left to learn about whether and how neuronal populations encode information in a laminar-specific manner. Existing multi-electrode array techniques, although informative for measuring responses across many millimeters of cortical space along the cortical surface, are unsuitable to approach the issue of laminar cortical circuits. Here, we present our method for setting up and recording individual neurons and local field potentials (LFPs) across cortical layers of primary visual cortex (V1) utilizing multi-contact laminar electrodes (Figure 1; Plextrode U-Probe, Plexon Inc). The methods included are recording device construction, identification of cortical layers, and identification of receptive fields of individual neurons. To identify cortical layers, we measure the evoked response potentials (ERPs) of the LFP time-series using full-field flashed stimuli. We then perform current-source density (CSD) analysis to identify the polarity inversion accompanied by the sink-source configuration at the base of layer 4 (the sink is inside layer 4, subsequently referred to as granular layer9-12). Current-source density is useful because it provides an index of the location, direction, and density of transmembrane current flow, allowing us to accurately position electrodes to record from all layers in a single penetration6, 11, 12.
Neuroscience, Issue 55, laminar probes, cortical layers, local-field potentials, population coding
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
Play Button
An Experimental Platform to Study the Closed-loop Performance of Brain-machine Interfaces
Authors: Naveed Ejaz, Kris D. Peterson, Holger G. Krapp.
Institutions: Imperial College London.
The non-stationary nature and variability of neuronal signals is a fundamental problem in brain-machine interfacing. We developed a brain-machine interface to assess the robustness of different control-laws applied to a closed-loop image stabilization task. Taking advantage of the well-characterized fly visuomotor pathway we record the electrical activity from an identified, motion-sensitive neuron, H1, to control the yaw rotation of a two-wheeled robot. The robot is equipped with 2 high-speed video cameras providing visual motion input to a fly placed in front of 2 CRT computer monitors. The activity of the H1 neuron indicates the direction and relative speed of the robot's rotation. The neural activity is filtered and fed back into the steering system of the robot by means of proportional and proportional/adaptive control. Our goal is to test and optimize the performance of various control laws under closed-loop conditions for a broader application also in other brain machine interfaces.
Neuroscience, Issue 49, Stabilization reflexes, Sensorimotor control, Adaptive control, Insect vision
Play Button
Designing and Implementing Nervous System Simulations on LEGO Robots
Authors: Daniel Blustein, Nikolai Rosenthal, Joseph Ayers.
Institutions: Northeastern University, Bremen University of Applied Sciences.
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
Neuroscience, Issue 75, Neurobiology, Bioengineering, Behavior, Mechanical Engineering, Computer Science, Marine Biology, Biomimetics, Marine Science, Neurosciences, Synthetic Biology, Robotics, robots, Modeling, models, Sensory Fusion, nervous system, Educational Tools, programming, software, lobster, Homarus americanus, animal model
Play Button
Morris Water Maze Experiment
Authors: Joseph Nunez.
Institutions: Michigan State University (MSU).
The Morris water maze is widely used to study spatial memory and learning. Animals are placed in a pool of water that is colored opaque with powdered non-fat milk or non-toxic tempera paint, where they must swim to a hidden escape platform. Because they are in opaque water, the animals cannot see the platform, and cannot rely on scent to find the escape route. Instead, they must rely on external/extra-maze cues. As the animals become more familiar with the task, they are able to find the platform more quickly. Developed by Richard G. Morris in 1984, this paradigm has become one of the "gold standards" of behavioral neuroscience.
Behavior, Issue 19, Declarative, Hippocampus, Memory, Procedural, Rodent, Spatial Learning
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.