JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging.
PUBLISHED: 01-01-2013
Endothelial dysfunction precedes atherosclerosis. Vasodilation induced by acetylcholine (ACh) is a specific test of endothelial function. Reproducibility of laser techniques such as laser-Doppler-flowmetry (LDF) and Laser-speckle-contrast-imaging (LSCI) to detect ACh vasodilation is debated and results expressions lack standardization. We aimed to study at a 7-day interval (i) the inter-subject reproducibility, (ii) the intra-subjects reproducibility, and (iii) the effect of the results expressions over variability.
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Published: 10-22-2014
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
25 Related JoVE Articles!
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
Play Button
A Novel Application of Musculoskeletal Ultrasound Imaging
Authors: Avinash Eranki, Nelson Cortes, Zrinka Gregurić Ferenček, Siddhartha Sikdar.
Institutions: George Mason University, George Mason University, George Mason University, George Mason University.
Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders.
Medicine, Issue 79, Anatomy, Physiology, Joint Diseases, Diagnostic Imaging, Muscle Contraction, ultrasonic applications, Doppler effect (acoustics), Musculoskeletal System, biomechanics, musculoskeletal kinematics, dynamic function, ultrasound imaging, vector Doppler, strain, strain rate
Play Button
Isolation of Microvascular Endothelial Tubes from Mouse Resistance Arteries
Authors: Matthew J. Socha, Steven S. Segal.
Institutions: University of Missouri, Dalton Cardiovascular Research Center.
The control of blood flow by the resistance vasculature regulates the supply of oxygen and nutrients concomitant with the removal of metabolic by-products, as exemplified by exercising skeletal muscle. Endothelial cells (ECs) line the intima of all resistance vessels and serve a key role in controlling diameter (e.g. endothelium-dependent vasodilation) and, thereby, the magnitude and distribution of tissue blood flow. The regulation of vascular resistance by ECs is effected by intracellular Ca2+ signaling, which leads to production of diffusible autacoids (e.g. nitric oxide and arachidonic acid metabolites)1-3 and hyperpolarization4,5 that elicit smooth muscle cell relaxation. Thus understanding the dynamics of endothelial Ca2+ signaling is a key step towards understanding mechanisms governing blood flow control. Isolating endothelial tubes eliminates confounding variables associated with blood in the vessel lumen and with surrounding smooth muscle cells and perivascular nerves, which otherwise influence EC structure and function. Here we present the isolation of endothelial tubes from the superior epigastric artery (SEA) using a protocol optimized for this vessel. To isolate endothelial tubes from an anesthetized mouse, the SEA is ligated in situ to maintain blood within the vessel lumen (to facilitate visualizing it during dissection), and the entire sheet of abdominal muscle is excised. The SEA is dissected free from surrounding skeletal muscle fibers and connective tissue, blood is flushed from the lumen, and mild enzymatic digestion is performed to enable removal of adventitia, nerves and smooth muscle cells using gentle trituration. These freshly-isolated preparations of intact endothelium retain their native morphology, with individual ECs remaining functionally coupled to one another, able to transfer chemical and electrical signals intercellularly through gap junctions6,7. In addition to providing new insight into calcium signaling and membrane biophysics, these preparations enable molecular studies of gene expression and protein localization within native microvascular endothelium.
Basic Protocol, Issue 81, endothelial tubes, microcirculation, calcium signaling, resistance vasculature, Confocal microscopy
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction
Authors: Ryan Hodges, Masayuki Endo, Andre La Gerche, Elisenda Eixarch, Philip DeKoninck, Vessilina Ferferieva, Jan D'hooge, Euan M. Wallace, Jan Deprest.
Institutions: University Hospitals Leuven, Monash University, Victoria, Australia, Katholieke Universiteit Leuven, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER).
Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is consistent with current clinical practice and is therefore useful in a translational research setting.
Medicine, Issue 76, Developmental Biology, Biomedical Engineering, Molecular Biology, Anatomy, Physiology, Cardiology, Fetal Therapies, Obstetric Surgical Procedures, Fetal Development, Surgical Procedures, Operative, intrauterine growth restriction, fetal echocardiography, Doppler ultrasound, fetal hemodynamics, animal model, clinical techniques
Play Button
A Novel High-resolution In vivo Imaging Technique to Study the Dynamic Response of Intracranial Structures to Tumor Growth and Therapeutics
Authors: Kelly Burrell, Sameer Agnihotri, Michael Leung, Ralph DaCosta, Richard Hill, Gelareh Zadeh.
Institutions: Hospital for Sick Children, Toronto Medical Discovery Tower, Princess Margaret Hospital, Toronto Western Hospital.
We have successfully integrated previously established Intracranial window (ICW) technology 1-4 with intravital 2-photon confocal microscopy to develop a novel platform that allows for direct long-term visualization of tissue structure changes intracranially. Imaging at a single cell resolution in a real-time fashion provides supplementary dynamic information beyond that provided by standard end-point histological analysis, which looks solely at 'snap-shot' cross sections of tissue. Establishing this intravital imaging technique in fluorescent chimeric mice, we are able to image four fluorescent channels simultaneously. By incorporating fluorescently labeled cells, such as GFP+ bone marrow, it is possible to track the fate of these cells studying their long-term migration, integration and differentiation within tissue. Further integration of a secondary reporter cell, such as an mCherry glioma tumor line, allows for characterization of cell:cell interactions. Structural changes in the tissue microenvironment can be highlighted through the addition of intra-vital dyes and antibodies, for example CD31 tagged antibodies and Dextran molecules. Moreover, we describe the combination of our ICW imaging model with a small animal micro-irradiator that provides stereotactic irradiation, creating a platform through which the dynamic tissue changes that occur following the administration of ionizing irradiation can be assessed. Current limitations of our model include penetrance of the microscope, which is limited to a depth of up to 900 μm from the sub cortical surface, limiting imaging to the dorsal axis of the brain. The presence of the skull bone makes the ICW a more challenging technical procedure, compared to the more established and utilized chamber models currently used to study mammary tissue and fat pads 5-7. In addition, the ICW provides many challenges when optimizing the imaging.
Cancer Biology, Issue 76, Medicine, Biomedical Engineering, Cellular Biology, Molecular Biology, Genetics, Neuroscience, Neurobiology, Biophysics, Anatomy, Physiology, Surgery, Intracranial Window, In vivo imaging, Stereotactic radiation, Bone Marrow Derived Cells, confocal microscopy, two-photon microscopy, drug-cell interactions, drug kinetics, brain, imaging, tumors, animal model
Play Button
Laser-Induced Chronic Ocular Hypertension Model on SD Rats
Authors: Kin Chiu, Raymond Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Glaucoma is one of the major causes of blindness in the world. Elevated intraocular pressure is a major risk factor. Laser photocoagulation induced ocular hypertension is one of the well established animal models. This video demonstrates how to induce ocular hypertension by Argon laser photocoagulation in rat.
Neuroscience, Issue 10, glaucoma, ocular hypertension, rat
Play Button
Paradigms for Pharmacological Characterization of C. elegans Synaptic Transmission Mutants
Authors: Cody Locke, Kalen Berry, Bwarenaba Kautu, Kyle Lee, Kim Caldwell, Guy Caldwell.
Institutions: University of Alabama.
The nematode, Caenorhabditis elegans, has become an expedient model for studying neurotransmission. C. elegans is unique among animal models, as the anatomy and connectivity of its nervous system has been determined from electron micrographs and refined by pharmacological assays. In this video, we describe how two complementary neural stimulants, an acetylcholinesterase inhibitor, called aldicarb, and a gamma-aminobutyric acid (GABA) receptor antagonist, called pentylenetetrazole (PTZ), may be employed to specifically characterize signaling at C. elegans neuromuscular junctions (NMJs) and facilitate our understanding of antagonistic neural circuits. Of 302 C. elegans neurons, nineteen GABAergic D-type motor neurons innervate body wall muscles (BWMs), while four GABAergic neurons, called RMEs, innervate head muscles. Conversely, thirty-nine motor neurons express the excitatory neurotransmitter, acetylcholine (ACh), and antagonize GABA transmission at BWMs to coordinate locomotion. The antagonistic nature of GABAergic and cholinergic motor neurons at body wall NMJs was initially determined by laser ablation and later buttressed by aldicarb exposure. Acute aldicarb exposure results in a time-course or dose-responsive paralysis in wild-type worms. Yet, loss of excitatory ACh transmission confers resistance to aldicarb, as less ACh accumulates at worm NMJs, leading to less stimulation of BWMs. Resistance to aldicarb may be observed with ACh-specific or general synaptic function mutants. Consistent with antagonistic GABA and ACh transmission, loss of GABA transmission, or a failure to negatively regulate ACh release, confers hypersensitivity to aldicarb. Although aldicarb exposure has led to the isolation of numerous worm homologs of neurotransmission genes, aldicarb exposure alone cannot efficiently determine prevailing roles for genes and pathways in specific C. elegans motor neurons. For this purpose, we have introduced a complementary experimental approach, which uses PTZ. Neurotransmission mutants display clear phenotypes, distinct from aldicarb-induced paralysis, in response to PTZ. Wild-type worms, as well as mutants with specific inabilities to release or receive ACh, do not show apparent sensitivity to PTZ. However, GABA mutants, as well as general synaptic function mutants, display anterior convulsions in a time-course or dose-responsive manner. Mutants that cannot negatively regulate general neurotransmitter release and, thus, secrete excessive amounts of ACh onto BWMs, become paralyzed on PTZ. The PTZ-induced phenotypes of discrete mutant classes indicate that a complementary approach with aldicarb and PTZ exposure paradigms in C. elegans may accelerate our understanding of neurotransmission. Moreover, videos demonstrating how we perform pharmacological assays should establish consistent methods for C. elegans research.
Neuroscience, Issue 18, epilepsy, seizure, Caenorhabditis elegans, genetics, worm, nematode, aldicarb, pentylenetetrazole, synaptic, GABA
Play Button
How to Build a Laser Speckle Contrast Imaging (LSCI) System to Monitor Blood Flow
Authors: Adrien Ponticorvo, Andrew K. Dunn.
Institutions: University of Texas at Austin.
Laser Speckle Contrast Imaging (LSCI) is a simple yet powerful technique that is used for full-field imaging of blood flow. The technique analyzes fluctuations in a dynamic speckle pattern to detect the movement of particles similar to how laser Doppler analyzes frequency shifts to determine particle speed. Because it can be used to monitor the movement of red blood cells, LSCI has become a popular tool for measuring blood flow in tissues such as the retina, skin, and brain. It has become especially useful in neuroscience where blood flow changes during physiological events like functional activation, stroke, and spreading depolarization can be quantified. LSCI is also attractive because it provides excellent spatial and temporal resolution while using inexpensive instrumentation that can easily be combined with other imaging modalities. Here we show how to build a LSCI setup and demonstrate its ability to monitor blood flow changes in the brain during an animal experiment.
Neuroscience, Issue 45, blood flow, optical imaging, laser speckle, brain, rat
Play Button
Dual-mode Imaging of Cutaneous Tissue Oxygenation and Vascular Function
Authors: Ronald X. Xu, Kun Huang, Ruogu Qin, Jiwei Huang, Jeff S. Xu, Liya Ding, Urmila S. Gnyawali, Gayle M. Gordillo, Surya C. Gnyawali, Chandan K. Sen.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University, The Ohio State University.
Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans.
Medicine, Issue 46, Dual-mode, multispectral imaging, infrared imaging, cutaneous tissue oxygenation, vascular function, co-registration, wound healing
Play Button
Intravital Microscopy of the Inguinal Lymph Node
Authors: Stephanie L. Sellers, Geoffrey W. Payne.
Institutions: University of Northern British Columbia, University of Northern British Columbia.
Lymph nodes (LN's), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection. The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.
Immunology, Issue 50, Intravital vital microscopy, lymph node, arteriole, vasculature, cellular trafficking, immune response
Play Button
Microiontophoresis and Micromanipulation for Intravital Fluorescence Imaging of the Microcirculation
Authors: Pooneh Bagher, Luis Polo-Parada, Steven S. Segal.
Institutions: University of Missouri, University of Missouri.
Microiontophoresis entails passage of current through a micropipette tip to deliver a solute at a designated site within an experimental preparation. Microiontophoresis can simulate synaptic transmission1 by delivering neurotransmitters and neuropeptides onto neurons reproducibly2. Negligible volume (fluid) displacement avoids mechanical disturbance to the experimental preparation. Adapting these techniques to the microcirculation3 has enabled mechanisms of vasodilation and vasoconstriction to be studied at the microscopic level in vivo4,5. A key advantage of such localized delivery is enabling vasomotor responses to be studied at defined sites within a microvascular network without evoking systemic or reflexive changes in blood pressure and tissue blood flow, thereby revealing intrinsic properties of microvessels. A limitation of microiontophoresis is that the precise concentration of agent delivered to the site of interest is difficult to ascertain6. Nevertheless, its release from the micropipette tip is proportional to the intensity and duration of the ejection current2,7, such that reproducible stimulus-response relationships can be readily determined under defined experimental conditions (described below). Additional factors affecting microiontophoretic delivery include solute concentration and its ionization in solution. The internal diameter of the micropipette tip should be ˜ 1 μm or less to minimize diffusional 'leak', which can be counteracted with a retaining current. Thus an outward (positive) current is used to eject a cation and a negative current used to retain it within the micropipette. Fabrication of micropipettes is facilitated with sophisticated electronic pullers8. Micropipettes are pulled from glass capillary tubes containing a filament that 'wicks' solution into the tip of the micropipette when filled from the back end ("backfilled"). This is done by inserting a microcapillary tube connected to a syringe containing the solution of interest and ejecting the solution into the lumen of the micropipette. Micromanipulators enable desired placement of micropipettes within the experimental preparation. Micromanipulators mounted on a movable base can be positioned around the preparation according to the topography of microvascular networks (developed below). The present protocol demonstrates microiontophoresis of acetylcholine (ACh+ Cl-) onto an arteriole of the mouse cremaster muscle preparation (See associated protocol: JoVE ID#2874) to produce endothelium-dependent vasodilation. Stimulus delivery is synchronized with digitized image acquisition using an electronic trigger. The use of Cx40BAC-GCaMP2 transgenic mice9 enables visualization of intracellular calcium responses underlying vasodilation in arteriolar endothelial cells in the living microcirculation.
Medicine, Issue 52, cremaster muscle, microcirculation, micropipettes, intravital microscopy
Play Button
Doppler Optical Coherence Tomography of Retinal Circulation
Authors: Ou Tan, Yimin Wang, Ranjith K. Konduru, Xinbo Zhang, SriniVas R. Sadda, David Huang.
Institutions: Oregon Health and Science University , University of Southern California.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
Medicine, Issue 67, Ophthalmology, Physics, Doppler optical coherence tomography, total retinal blood flow, dual circular scan pattern, image analysis, semi-automated grading software, optic disc
Play Button
Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices
Authors: Staci E. Engle, Hilary J. Broderick, Ryan M. Drenan.
Institutions: Purdue University.
Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of interest is maneuvered into position near the recorded cell. An injection of pressurized air or inert nitrogen into the drug-filled pipette causes a small amount of drug solution to be ejected from the pipette onto the recorded cell. Using this method, nAChR-mediated currents are able to be resolved with millisecond accuracy. Drug application times can easily be varied, and the drug-filled pipette can be retracted and replaced with a new pipette, allowing for concentration-response curves to be created for a single neuron. Although described in the context of nAChR neurobiology, this technique should be useful for studying many types of ligand-gated ion channels or receptors in neurons from brain slices.
Neuroscience, Issue 68, Nicotinic, acetylcholine, neurotransmitter, neuron, patch clamp, brain slice, picospritzer
Play Button
Optimized System for Cerebral Perfusion Monitoring in the Rat Stroke Model of Intraluminal Middle Cerebral Artery Occlusion
Authors: Simone Beretta, Matteo Riva, Davide Carone, Elisa Cuccione, Giada Padovano, Virginia Rodriguez Menendez, Giovanni B. Pappadá, Alessandro Versace, Carlo Giussani, Erik P. Sganzerla, Carlo Ferrarese.
Institutions: University of Milano Bicocca.
The translational potential of pre-clinical stroke research depends on the accuracy of experimental modeling. Cerebral perfusion monitoring in animal models of acute ischemic stroke allows to confirm successful arterial occlusion and exclude subarachnoid hemorrhage. Cerebral perfusion monitoring can also be used to study intracranial collateral circulation, which is emerging as a powerful determinant of stroke outcome and a possible therapeutic target. Despite a recognized role of Laser Doppler perfusion monitoring as part of the current guidelines for experimental cerebral ischemia, a number of technical difficulties exist that limit its widespread use. One of the major issues is obtaining a secure and prolonged attachment of a deep-penetration Laser Doppler probe to the animal skull. In this video, we show our optimized system for cerebral perfusion monitoring during transient middle cerebral artery occlusion by intraluminal filament in the rat. We developed in-house a simple method to obtain a custom made holder for twin-fibre (deep-penetration) Laser Doppler probes, which allow multi-site monitoring if needed. A continuous and prolonged monitoring of cerebral perfusion could easily be obtained over the intact skull.
Medicine, Issue 72, Neuroscience, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Surgery, Brain Ischemia, Stroke, Hemodynamics, middle cerebral artery occlusion, cerebral hemodynamics, perfusion monitoring, Laser Doppler, intracranial collaterals, ischemic penumbra, rat, animal model
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
Play Button
Non-invasive Assessment of Microvascular and Endothelial Function
Authors: Cynthia Cheng, Constantine Daskalakis, Bonita Falkner.
Institutions: Thomas Jefferson University , Thomas Jefferson University, Thomas Jefferson University .
The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBFmax/FBFbase is computed as an estimate of vasodilation, by dividing the mean of the four FBFmax values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVRmax) is calculated as the mean arterial pressure (MAP) divided by FBFmax. Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly. The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal consequences.
Medicine, Issue 71, Anatomy, Physiology, Immunology, Pharmacology, Hematology, Diseases, Health Care, Life sciences, Microcirculation, endothelial dysfunction, capillary density, microvascular function, blood vessels, capillaries, capillary, venous occlusion, circulation, experimental therapeutics, capillaroscopy
Play Button
Laser Capture Microdissection of Mammalian Tissue
Authors: Robert A Edwards.
Institutions: University of California, Irvine (UCI).
Laser capture microscopy, also known as laser microdissection (LMD), enables the user to isolate small numbers of cells or tissues from frozen or formalin-fixed, paraffin-embedded tissue sections. LMD techniques rely on a thermo labile membrane placed either on top of, or underneath, the tissue section. In one method, focused laser energy is used to melt the membrane onto the underlying cells, which can then be lifted out of the tissue section. In the other, the laser energy vaporizes the foil along a path "drawn" on the tissue, allowing the selected cells to fall into a collection device. Each technique allows the selection of cells with a minimum resolution of several microns. DNA, RNA, protein, and lipid samples may be isolated and analyzed from micro-dissected samples. In this video, we demonstrate the use of the Leica AS-LMD laser microdissection instrument in seven segments, including an introduction to the principles of LMD, initializing the instrument for use, general considerations for sample preparation, mounting the specimen and setting up capture tubes, aligning the microscope, adjusting the capture controls, and capturing tissue specimens. Laser-capture micro-dissection enables the investigator to isolate samples of pure cell populations as small as a few cell-equivalents. This allows the analysis of cells of interest that are free of neighboring contaminants, which may confound experimental results.
Issue 8, Basic Protocols, Laser Capture Microdissection, Microdissection Techniques, Leica
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.