JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Effects of Tai Chi in patients with chronic obstructive pulmonary disease: preliminary evidence.
PUBLISHED: 01-01-2013
Currently, several studies assessed the role of Tai Chi (TC) in management of chronic obstructive pulmonary disease, but these studies have wide variation of sample and convey inconclusive results. We therefore undertook a meta-analysis to assess the effects of TC.
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Published: 11-08-2013
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
25 Related JoVE Articles!
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice
Authors: Marcella Facchini, Ida De Fino, Camilla Riva, Alessandra Bragonzi.
Institutions: San Raffaele Scientific Institute, Italian Cystic Fibrosis Research Foundation.
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies.
Infection, Issue 85, Opportunistic Infections, Respiratory Tract Infections, Inflammation, Lung Diseases, Cystic Fibrosis, Pseudomonas aeruginosa
Play Button
Assessment of Right Ventricular Structure and Function in Mouse Model of Pulmonary Artery Constriction by Transthoracic Echocardiography
Authors: Hui-Wen Cheng, Sudeshna Fisch, Susan Cheng, Michael Bauer, Soeun Ngoy, Yiling Qiu, Jian Guan, Shikha Mishra, Christopher Mbah, Ronglih Liao.
Institutions: Harvard Medical School, Chang Gung Memorial Hospital.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential. A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software. Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC. Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.
Medicine, Issue 84, Trans-thoracic echocardiography (TTE), right ventricle (RV), pulmonary artery constriction (PAC), peak velocity, right ventricular systolic pressure (RVSP)
Play Button
A Mouse Tumor Model of Surgical Stress to Explore the Mechanisms of Postoperative Immunosuppression and Evaluate Novel Perioperative Immunotherapies
Authors: Lee-Hwa Tai, Christiano Tanese de Souza, Shalini Sahi, Jiqing Zhang, Almohanad A Alkayyal, Abhirami Anu Ananth, Rebecca A.C. Auer.
Institutions: Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa, The Second Hospital of Shandong University, University of Tabuk, Ottawa General Hospital.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.
Medicine, Issue 85, mouse, tumor model, surgical stress, immunosuppression, perioperative immunotherapy, metastases
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation
Authors: Yong-Ung Lee, Tai Yi, Iyore James, Shuhei Tara, Alexander J. Stuber, Kejal V. Shah, Avione Y. Lee, Tadahisa Sugiura, Narutoshi Hibino, Toshiharu Shinoka, Christopher K. Breuer.
Institutions: Nationwide Children's Hospital, Nationwide Children's Hospital, Nationwide Children's Hospital.
Tissue engineered heart valves, especially decellularized valves, are starting to gain momentum in clinical use of reconstructive surgery with mixed results. However, the cellular and molecular mechanisms of the neotissue development, valve thickening, and stenosis development are not researched extensively. To answer the above questions, we developed a murine heterotopic heart valve transplantation model. A heart valve was harvested from a valve donor mouse and transplanted to a heart donor mouse. The heart with a new valve was transplanted heterotopically to a recipient mouse. The transplanted heart showed its own heartbeat, independent of the recipient’s heartbeat. The blood flow was quantified using a high frequency ultrasound system with a pulsed wave Doppler. The flow through the implanted pulmonary valve showed forward flow with minimal regurgitation and the peak flow was close to 100 mm/sec. This murine model of heart valve transplantation is highly versatile, so it can be modified and adapted to provide different hemodynamic environments and/or can be used with various transgenic mice to study neotissue development in a tissue engineered heart valve.
Medicine, Issue 89, tissue engineering, pulmonary valve, congenital heart defect, decellularized heart valve, transgenic mouse model, heterotopic heart transplantation
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Isolation and Culture of Pulmonary Endothelial Cells from Neonatal Mice
Authors: Magdalena Sobczak, Jillian Dargatz, Magdalena Chrzanowska-Wodnicka.
Institutions: BloodCenter of Wisconsin.
Endothelial cells provide a useful research model in many areas of vascular biology. Since its first isolation 1, human umbilical vein endothelial cells (HUVECs) have shown to be convenient, easy to obtain and culture, and thus are the most widely studied endothelial cells. However, for research focused on processes like angiogenesis, permeability or many others, microvascular endothelial cells (ECs) are a much more physiologically relevant model to study 2. Furthermore, ECs isolated from knockout mice provide a useful tool for analysis of protein function ex vivo. Several approaches to isolate and culture microvascular ECs of different origin have been reported to date 3-7, but consistent isolation and culture of pure ECs is still a major technical problem in many laboratories. Here, we provide a step-by-step protocol on a reliable and relatively simple method of isolating and culturing mouse lung endothelial cells (MLECs). In this approach, lung tissue obtained from 6- to 8-day old pups is first cut into pieces, digested with collagenase/dispase (C/D) solution and dispersed mechanically into single-cell suspension. MLECS are purified from cell suspension using positive selection with anti-PECAM-1 antibody conjugated to Dynabeads using a Magnetic Particle Concentrator (MPC). Such purified cells are cultured on gelatin-coated tissue culture (TC) dishes until they become confluent. At that point, cells are further purified using Dynabeads coupled to anti-ICAM-2 antibody. MLECs obtained with this protocol exhibit a cobblestone phenotype, as visualized by phase-contrast light microscopy, and their endothelial phenotype has been confirmed using FACS analysis with anti-VE-cadherin 8 and anti-VEGFR2 9 antibodies and immunofluorescent staining of VE-cadherin. In our hands, this two-step isolation procedure consistently and reliably yields a pure population of MLECs, which can be further cultured. This method will enable researchers to take advantage of the growing number of knockout and transgenic mice to directly correlate in vivo studies with results of in vitro experiments performed on isolated MLECs and thus help to reveal molecular mechanisms of vascular phenotypes observed in vivo.
Cellular Biology, Issue 46, Endothelium, lung, microvascular cells, mouse, isolation, angiogenesis, vascular permeability, adherens junctions
Play Button
Isolation of Primary Myofibroblasts from Mouse and Human Colon Tissue
Authors: Hassan Khalil, Wenxian Nie, Robert A Edwards, James Yoo.
Institutions: UCLA, UC Irvine.
The myofibroblast is a stromal cell of the gastrointestinal (GI) tract that has been gaining considerable attention for its critical role in many GI functions. While several myofibroblast cell lines are commercially available to study these cells in vitro, research results from a cell line exposed to experimental cell culture conditions have inherent limitations due to the overly reductionist nature of the work. Use of primary myofibroblasts offers a great advantage in terms of confirming experimental findings identified in a cell line. Isolation of primary myofibroblasts from an animal model allows for the study of myofibroblasts under conditions that more closely mimic the disease state being studied. Isolation of primary myofibroblasts from human colon tissue provides arguably the most relevant experimental data, since the cells come directly from patients with the underlying disease. We describe a well-established technique that can be utilized to isolate primary myofibroblasts from both mouse and human colon tissue. These isolated cells have been characterized to be alpha-smooth muscle actin and vimentin-positive, and desmin-negative, consistent with subepithelial intestinal myofibroblasts. Primary myofibroblast cells can be grown in cell culture and used for experimental purposes over a limited number of passages.
Cellular Biology, Issue 80, Myofibroblasts, Mesenchymal Stromal Cells, Gastrointestinal Tract, stroma, colon, primary cells
Play Button
Isolation of Mouse Respiratory Epithelial Cells and Exposure to Experimental Cigarette Smoke at Air Liquid Interface
Authors: Hilaire C. Lam, Augustine M.K. Choi, Stefan W. Ryter.
Institutions: Harvard Medical School, University of Pittsburgh.
Pulmonary epithelial cells can be isolated from the respiratory tract of mice and cultured at air-liquid interface (ALI) as a model of differentiated respiratory epithelium. A protocol is described for isolating and exposing these cells to mainstream cigarette smoke (CS), in order to study epithelial cell responses to CS exposure. The protocol consists of three parts: the isolation of airway epithelial cells from mouse trachea, the culturing of these cells at air-liquid interface (ALI) as fully differentiated epithelial cells, and the delivery of calibrated mainstream CS to these cells in culture. The ALI culture system allows the culture of respiratory epithelia under conditions that more closely resemble their physiological setting than ordinary liquid culture systems. The study of molecular and lung cellular responses to CS exposure is a critical component of understanding the impact of environmental air pollution on human health. Research findings in this area may ultimately contribute towards understanding the etiology of chronic obstructive pulmonary disease (COPD), and other tobacco-related diseases, which represent major global health problems.
Medicine, Issue 48, Air-Liquid Interface, Cell isolation, Cigarette smoke, Epithelial cells
Play Button
In vitro Reconstitution of the Active T. castaneum Telomerase
Authors: Anthony P. Schuller, Michael J. Harkisheimer, Emmanuel Skordalakes.
Institutions: University of Pennsylvania.
Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase1 that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes2 that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome3 and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit4. Additionally, telomerase is dormant in most somatic cells5 in adults, but is active in cancer cells6 where it promotes cell immortality7. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres8,9. Prior to 2008, only structures for individual telomerase domains had been solved10,11. A major breakthrough in this field came from the determination of the crystal structure of the active12, catalytic subunit of T. castaneum telomerase, TcTERT1. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.
Molecular Biology, Issue 53, Telomerase, protein expression, purification, chromatography, RNA isolation, TRAP
Play Button
ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells
Authors: Sevgi Irtegun, Yasmin M. Ramdzan, Terrence D. Mulhern, Danny M. Hatters.
Institutions: Bio21 Molecular Science and Biotechnology Institute.
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).
Cell Biology, Issue 54, tetracysteine, TC, ReAsH, FlAsH, biarsenical dyes, fluorescence, imaging, confocal microscopy, ImageJ, GFP
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Visualization of Vascular Ca2+ Signaling Triggered by Paracrine Derived ROS
Authors: Karthik Mallilankaraman, Rajesh Kumar Gandhirajan, Brian J. Hawkins, Muniswamy Madesh.
Institutions: Temple University , University of Washington.
Oxidative stress has been implicated in a number of pathologic conditions including ischemia/reperfusion damage and sepsis. The concept of oxidative stress refers to the aberrant formation of ROS (reactive oxygen species), which include O2•-, H2O2, and hydroxyl radicals. Reactive oxygen species influences a multitude of cellular processes including signal transduction, cell proliferation and cell death1-6. ROS have the potential to damage vascular and organ cells directly, and can initiate secondary chemical reactions and genetic alterations that ultimately result in an amplification of the initial ROS-mediated tissue damage. A key component of the amplification cascade that exacerbates irreversible tissue damage is the recruitment and activation of circulating inflammatory cells. During inflammation, inflammatory cells produce cytokines such as tumor necrosis factor-α (TNFα) and IL-1 that activate endothelial cells (EC) and epithelial cells and further augment the inflammatory response7. Vascular endothelial dysfunction is an established feature of acute inflammation. Macrophages contribute to endothelial dysfunction during inflammation by mechanisms that remain unclear. Activation of macrophages results in the extracellular release of O2•- and various pro-inflammatory cytokines, which triggers pathologic signaling in adjacent cells8. NADPH oxidases are the major and primary source of ROS in most of the cell types. Recently, it is shown by us and others9,10 that ROS produced by NADPH oxidases induce the mitochondrial ROS production during many pathophysiological conditions. Hence measuring the mitochondrial ROS production is equally important in addition to measuring cytosolic ROS. Macrophages produce ROS by the flavoprotein enzyme NADPH oxidase which plays a primary role in inflammation. Once activated, phagocytic NADPH oxidase produces copious amounts of O2•- that are important in the host defense mechanism11,12. Although paracrine-derived O2•- plays an important role in the pathogenesis of vascular diseases, visualization of paracrine ROS-induced intracellular signaling including Ca2+ mobilization is still hypothesis. We have developed a model in which activated macrophages are used as a source of O2•- to transduce a signal to adjacent endothelial cells. Using this model we demonstrate that macrophage-derived O2•- lead to calcium signaling in adjacent endothelial cells.
Molecular Biology, Issue 58, Reactive oxygen species, Calcium, paracrine superoxide, endothelial cells, confocal microscopy
Play Button
Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice
Authors: Wen-Chi Chen, Sung-Hyun Park, Carol Hoffman, Cecil Philip, Linda Robinson, James West, Gabriele Grunig.
Institutions: New York University School of Medicine, Tuxedo, Vanderbilt University Medical Center, New York University School of Medicine.
The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes 1. Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension 2. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases 3. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention 4. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system. Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery5-13. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues. The procedural workflow outlined here can be adapted for a wide variety of laboratory settings and study designs, from small, targeted experiments, to large drug screening assays. The simultaneous acquisition of cardiac physiology data that can be expanded to include echocardiography5,14-17 and harvest of heart, lung and immune tissues reduces the number of animals needed to obtain data that move the scientific knowledge basis forward. The procedural workflow presented here also provides an ideal basis for gaining knowledge of the networks that link immune, lung and heart function. The same principles outlined here can be adapted to study other or additional organs as needed.
Immunology, Issue 71, Medicine, Anatomy, Physiology, Cardiology, Surgery, Cardiovascular Abnormalities, Inflammation, Respiration Disorders, Immune System Diseases, Cardiac physiology, mouse, pulmonary hypertension, right heart function, lung immune response, lung inflammation, lung remodeling, catheterization, mice, tissue, animal model
Play Button
Angiogenesis in the Ischemic Rat Lung
Authors: John Jenkins, Elizabeth Wagner.
Institutions: Johns Hopkins University.
The adult lung is perfused by both the systemic bronchial artery and the entire venous return flowing through the pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that responds to a need for enhanced lung perfusion and shows robust neovascularization. Pulmonary vascular ischemia induced by pulmonary artery obstruction has been shown to result in rapid systemic arterial angiogenesis in man as well as in several animal models. Although the histologic assessment of the time course of bronchial artery proliferation in rats was carefully described by Weibel 1, mechanisms responsible for this organized growth of new vessels are not clear. We provide surgical details of inducing left pulmonary artery ischemia in the rat that leads to bronchial neovascularization. Quantification of the extent of angiogenesis presents an additional challenge due to the presence of the two vascular beds within the lung. Methods to determine functional angiogenesis based on labeled microsphere injections are provided.
Medicine, Issue 72, Anatomy, Physiology, Biomedical Engineering, Pathology, Surgery, Lung, Lung Diseases, Lung Injury, Thoracic Surgical Procedures, Physiological Processes, Growth and Development, Respiratory System, Physiological Phenomena, angiogenesis, bronchial artery, blood vessels, arteries, rat, ischemia, intubation, artery ligation, thoracotomy, cannulation, animal model
Play Button
Direct Pressure Monitoring Accurately Predicts Pulmonary Vein Occlusion During Cryoballoon Ablation
Authors: Ioanna Kosmidou, Shannnon Wooden, Brian Jones, Thomas Deering, Andrew Wickliffe, Dan Dan.
Institutions: Piedmont Heart Institute, Medtronic Inc..
Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast.
Medicine, Issue 72, Anatomy, Physiology, Cardiology, Biomedical Engineering, Surgery, Cardiovascular System, Cardiovascular Diseases, Surgical Procedures, Operative, Investigative Techniques, Atrial fibrillation, Cryoballoon Ablation, Pulmonary Vein Occlusion, Pulmonary Vein Isolation, electrophysiology, catheterizatoin, heart, vein, clinical, surgical device, surgical techniques
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
Play Button
Noninvasive Intratracheal Intubation to Study the Pathology and Physiology of Mouse Lung
Authors: Yan Cai, Shioko Kimura.
Institutions: National Institutes of Health.
The use of a model that mimics the condition of lung diseases in humans is critical for studying the pathophysiology and/or etiology of a particular disease and for developing therapeutic intervention. With the increasing availability of knockout and transgenic derivatives, together with a vast amount of genetic information, mice provide one of the best models to study the molecular mechanisms underlying the pathology and physiology of lung diseases. Inhalation, intranasal instillation, intratracheal instillation, and intratracheal intubation are the most widely used techniques by a number of investigators to administer materials of interest to mouse lungs. There are pros and cons for each technique depending on the goals of a study. Here a noninvasive intratracheal intubation method that can directly deliver exogenous materials to mouse lungs is presented. This technique was applied to administer bleomycin to mouse lungs as a model to study pulmonary fibrosis.
Medicine, Issue 81, mouse, rodents, intratracheal intubation, delivery of exogenous substances, lung, study of airway pathology and physiology, pulmonary fibrosis
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Imaging Leukocyte Adhesion to the Vascular Endothelium at High Intraluminal Pressure
Authors: Danielle L. Michell, Karen L. Andrews, Kevin J. Woollard, Jaye P.F. Chin-Dusting.
Institutions: Monash University.
Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease2, stroke3 and heart failure4. An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species5. In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers6 however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration7-9. When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry10. Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model9 which enables real-time analysis of leukocyte -endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter11 as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.
Immunology, Issue 54, Leukocyte adhesion, intraluminal pressure, endothelial dysfunction, inflammation, hypertension
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.