JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Dynamical models explaining social balance and evolution of cooperation.
PUBLISHED: 01-01-2013
Social networks with positive and negative links often split into two antagonistic factions. Examples of such a split abound: revolutionaries versus an old regime, Republicans versus Democrats, Axis versus Allies during the second world war, or the Western versus the Eastern bloc during the Cold War. Although this structure, known as social balance, is well understood, it is not clear how such factions emerge. An earlier model could explain the formation of such factions if reputations were assumed to be symmetric. We show this is not the case for non-symmetric reputations, and propose an alternative model which (almost) always leads to social balance, thereby explaining the tendency of social networks to split into two factions. In addition, the alternative model may lead to cooperation when faced with defectors, contrary to the earlier model. The difference between the two models may be understood in terms of the underlying gossiping mechanism: whereas the earlier model assumed that an individual adjusts his opinion about somebody by gossiping about that person with everybody in the network, we assume instead that the individual gossips with that person about everybody. It turns out that the alternative model is able to lead to cooperative behaviour, unlike the previous model.
Social exclusion is a complex social phenomenon with powerful negative consequences. Given the impact of social exclusion on mental and emotional health, an understanding of how perceptions of social exclusion develop over the course of a social interaction is important for advancing treatments aimed at lessening the harmful costs of being excluded. To date, most scientific examinations of social exclusion have looked at exclusion after a social interaction has been completed. While this has been very helpful in developing an understanding of what happens to a person following exclusion, it has not helped to clarify the moment-to-moment dynamics of the process of social exclusion. Accordingly, the current protocol was developed to obtain an improved understanding of social exclusion by examining the patterns of event-related brain activation that are present during social interactions. This protocol allows greater precision and sensitivity in detailing the social processes that lead people to feel as though they have been excluded from a social interaction. Importantly, the current protocol can be adapted to include research projects that vary the nature of exclusionary social interactions by altering how frequently participants are included, how long the periods of exclusion will last in each interaction, and when exclusion will take place during the social interactions. Further, the current protocol can be used to examine variables and constructs beyond those related to social exclusion. This capability to address a variety of applications across psychology by obtaining both neural and behavioral data during ongoing social interactions suggests the present protocol could be at the core of a developing area of scientific inquiry related to social interactions.
22 Related JoVE Articles!
Play Button
Inchworming: A Novel Motor Stereotypy in the BTBR T+ Itpr3tf/J Mouse Model of Autism
Authors: Jacklyn D. Smith, Jong M. Rho, Susan A. Masino, Richelle Mychasiuk.
Institutions: University of Calgary Faculty of Medicine, Trinity College.
Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental disorder characterized by decreased reciprocal social interaction, abnormal communication, and repetitive behaviors with restricted interest. As diagnosis is based on clinical criteria, any potentially relevant rodent models of this heterogeneous disorder should ideally recapitulate these diverse behavioral traits. The BTBR T+ Itpr3tf/J (BTBR) mouse is an established animal model of ASD, displaying repetitive behaviors such as increased grooming, as well as cognitive inflexibility. With respect to social interaction and interest, the juvenile play test has been employed in multiple rodent models of ASD. Here, we show that when BTBR mice are tested in a juvenile social interaction enclosure containing sawdust bedding, they display a repetitive synchronous digging motion. This repetitive motor behavior, referred to as "inchworming," was named because of the stereotypic nature of the movements exhibited by the mice while moving horizontally across the floor. Inchworming mice must use their fore- and hind-limbs in synchrony to displace the bedding, performing a minimum of one inward and one outward motion. Although both BTBR and C56BL/6J (B6) mice exhibit this behavior, BTBR mice demonstrate a significantly higher duration and frequency of inchworming and a decreased latency to initiate inchworming when placed in a bedded enclosure. We conclude that this newly described behavior provides a measure of a repetitive motor stereotypy that can be easily measured in animal models of ASD.
Behavior, Issue 89, mice, inbred C57BL, social behavior, animal models, autism, BTBR, motor stereotypy, repetitive
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
Play Button
Corticospinal Excitability Modulation During Action Observation
Authors: Luisa Sartori, Sonia Betti, Umberto Castiello.
Institutions: Universita degli Studi di Padova.
This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else's action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person's actions produces motor facilitation in an onlooker's corresponding muscles and in what way corticospinal excitability is modulated in social contexts.
Behavior, Issue 82, action observation, transcranial magnetic stimulation, motor evoked potentials, corticospinal excitability
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures
Authors: Rahul Pandey, Melissa Spannuth, Jacinta C. Conrad.
Institutions: University of Houston.
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.
Chemistry, Issue 87, confocal microscopy, particle tracking, colloids, suspensions, confinement, gelation, microfluidics, image correlation, dynamics, suspension flow
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
Play Button
A Protocol for Genetic Induction and Visualization of Benign and Invasive Tumors in Cephalic Complexes of Drosophila melanogaster
Authors: Ajay Srivastava.
Institutions: Western Kentucky University .
Drosophila has illuminated our understanding of the genetic basis of normal development and disease for the past several decades and today it continues to contribute immensely to our understanding of complex diseases 1-7. Progression of tumors from a benign to a metastatic state is a complex event 8 and has been modeled in Drosophila to help us better understand the genetic basis of this disease 9. Here I present a simple protocol to genetically induce, observe and then analyze the progression of tumors in Drosophila larvae. The tumor induction technique is based on the MARCM system 10 and exploits the cooperation between an activated oncogene, RasV12 and loss of cell polarity genes (scribbled, discs large and lethal giant larvae) to generate invasive tumors 9. I demonstrate how these tumors can be visualized in the intact larvae and then how these can be dissected out for further analysis. The simplified protocol presented here should make it possible for this technique to be utilized by investigators interested in understanding the role of a gene in tumor invasion.
Medicine, Issue 79, Imaginal Discs, Drosophila melanogaster, Neoplasm Metastasis, Drosophila, Invasive Tumors, Benign Tumors, Cephalic Complex, Mosaic Analysis with a Repressible Cell Marker technique
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Recording Behavioral Responses to Reflection in Crayfish
Authors: A. Joffre Mercier, Holly Y. May.
Institutions: Brock University.
Social behavior depends on sensory input from the visual, mechanical and olfactory systems. One important issue concerns the relative roles of each sensory modality in guiding behavior. The role of visual inputs has been examined by isolating visual stimuli from mechanical and chemosensory stimuli. In some studies (Bruski & Dunham, 1987: Delgado-Morales et al., 2004) visual inputs have been removed with blindfolds or low light intensity, and effects of remaining sensory modalities have been elucidated. An alternative approach is to study the effects of visual inputs in the absence of any appropriate mechanical and chemosensory cues. This approach aims to identify the exclusive role of visual inputs. We have used two methods to provide visual stimuli to crayfish without providing chemical and mechanical cues. In one method, crayfish are videotaped in an aquarium where half of the walls are covered in mirrors to provide a reflective environment, and the other half are covered in a non-reflective (matte finish) plastic. This gives the crayfish a choice between reflective and non-reflective environments. The reflective environment provides visual cues in the form of reflected images of the crayfish as it moves throughout half of the tank; these visual cues are missing from the non-reflective half of the tank. An alternative method is to videotape the behavior of crayfish in an aquarium separated by a smaller chamber at each end, with a crayfish in one small chamber providing visual cues and an inert object in the opposite small chamber providing visual input from a non-moving, non-crayfish source. Our published results indicate that responses of crayfish to the reflective environment depend on socialization and dominance rank. Socialized crayfish spent more time in the reflective environment and exhibited certain behaviors more frequently there than in the non-reflective environment; isolated crayfish showed no such differences. Crayfish that were housed in same-sex pairs developed a social rank of either dominant or subordinate. Responses to reflection differed between dominant and subordinate crayfish (May & Mercier, 2006; May & Mercier, 2007). Dominant crayfish spent more time on the reflective side, entered reflective corners more frequently and spent more time in reflective corners compared to the non-reflective side. Subordinate crayfish walked in reverse more often on the reflective side than on the non-reflective side. Preliminary data suggest similar effects from visual cues provided by a crayfish in a small adjoining chamber (May et al., 2008).
JoVE Neuroscience, Issue 39, social, chemosensory, behavior, visual, dominance, crayfish
Play Button
Peering into the Dynamics of Social Interactions: Measuring Play Fighting in Rats
Authors: Brett T. Himmler, Vivien C. Pellis, Sergio M. Pellis.
Institutions: University of Lethbridge.
Play fighting in the rat involves attack and defense of the nape of the neck, which if contacted, is gently nuzzled with the snout. Because the movements of one animal are countered by the actions of its partner, play fighting is a complex, dynamic interaction. This dynamic complexity raises methodological problems about what to score for experimental studies. We present a scoring schema that is sensitive to the correlated nature of the actions performed. The frequency of play fighting can be measured by counting the number of playful nape attacks occurring per unit time. However, playful defense, as it can only occur in response to attack, is necessarily a contingent measure that is best measured as a percentage (#attacks defended/total # attacks X 100%). How a particular attack is defended against can involve one of several tactics, and these are contingent on defense having taken place; consequently, the type of defense is also best expressed contingently as a percentage. Two experiments illustrate how these measurements can be used to detect the effect of brain damage on play fighting even when there is no effect on overall playfulness. That is, the schema presented here is designed to detect and evaluate changes in the content of play following an experimental treatment.
Neuroscience, Issue 71, Neurobiology, Behavior, Psychology, Anatomy, Physiology, Medicine, Play behavior, play, fighting, wrestling, grooming, allogrooming, social interaction, rat, behavioral analysis, animal model
Play Button
Assessment of Social Interaction Behaviors
Authors: Oksana Kaidanovich-Beilin, Tatiana Lipina, Igor Vukobradovic, John Roder, James R. Woodgett.
Institutions: Mount Sinai Hospital, Mount Sinai Hospital, University of Toronto, University of Toronto, University of Toronto.
Social interactions are a fundamental and adaptive component of the biology of numerous species. Social recognition is critical for the structure and stability of the networks and relationships that define societies. For animals, such as mice, recognition of conspecifics may be important for maintaining social hierarchy and for mate choice 1. A variety of neuropsychiatric disorders are characterized by disruptions in social behavior and social recognition, including depression, autism spectrum disorders, bipolar disorders, obsessive-compulsive disorders, and schizophrenia. Studies of humans as well as animal models (e.g., Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Rattus norvegicus) have identified genes involved in the regulation of social behavior 2. To assess sociability in animal models, several behavioral tests have been developed (reviewed in 3). Integrative research using animal models and appropriate tests for social behavior may lead to the development of improved treatments for social psychopathologies. The three-chamber paradigm test known as Crawley's sociability and preference for social novelty protocol has been successfully employed to study social affiliation and social memory in several inbred and mutant mouse lines (e.g. 4-7). The main principle of this test is based on the free choice by a subject mouse to spend time in any of three box's compartments during two experimental sessions, including indirect contact with one or two mice with which it is unfamiliar. To quantitate social tendencies of the experimental mouse, the main tasks are to measure a) the time spent with a novel conspecific and b) preference for a novel vs. a familiar conspecific. Thus, the experimental design of this test allows evaluation of two critical but distinguishable aspects of social behavior, such as social affiliation/motivation, as well as social memory and novelty. "Sociability" in this case is defined as propensity to spend time with another mouse, as compared to time spent alone in an identical but empty chamber 7. "Preference for social novelty" is defined as propensity to spend time with a previously unencountered mouse rather than with a familiar mouse 7. This test provides robust results, which then must be carefully analyzed, interpreted and supported/confirmed by alternative sociability tests. In addition to specific applications, Crawley's sociability test can be included as an important component of general behavioral screen of mutant mice.
Neuroscience, Issue 48, Mice, behavioral test, phenotyping, social interaction
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Combining Behavioral Endocrinology and Experimental Economics: Testosterone and Social Decision Making
Authors: Christoph Eisenegger, Michael Naef.
Institutions: University of Zurich, Royal Holloway, University of London.
Behavioral endocrinological research in humans as well as in animals suggests that testosterone plays a key role in social interactions. Studies in rodents have shown a direct link between testosterone and aggressive behavior1 and folk wisdom adapts these findings to humans, suggesting that testosterone induces antisocial, egoistic or even aggressive behavior2. However, many researchers doubt a direct testosterone-aggression link in humans, arguing instead that testosterone is primarily involved in status-related behavior3,4. As a high status can also be achieved by aggressive and antisocial means it can be difficult to distinguish between anti-social and status seeking behavior. We therefore set up an experimental environment, in which status can only be achieved by prosocial means. In a double-blind and placebo-controlled experiment, we administered a single sublingual dose of 0.5 mg of testosterone (with a hydroxypropyl-β-cyclodextrin carrier) to 121 women and investigated their social interaction behavior in an economic bargaining paradigm. Real monetary incentives are at stake in this paradigm; every player A receives a certain amount of money and has to make an offer to another player B on how to share the money. If B accepts, she gets what was offered and player A keeps the rest. If B refuses the offer, nobody gets anything. A status seeking player A is expected to avoid being rejected by behaving in a prosocial way, i.e. by making higher offers. The results show that if expectations about the hormone are controlled for, testosterone administration leads to a significant increase in fair bargaining offers compared to placebo. The role of expectations is reflected in the fact that subjects who report that they believe to have received testosterone make lower offers than those who say they believe that they were treated with a placebo. These findings suggest that the experimental economics approach is sensitive for detecting neurobiological effects as subtle as those achieved by administration of hormones. Moreover, the findings point towards the importance of both psychosocial as well as neuroendocrine factors in determining the influence of testosterone on human social behavior.
Neuroscience, Issue 49, behavioral endocrinology, testosterone, social status, decision making
Play Button
Using Visual and Narrative Methods to Achieve Fair Process in Clinical Care
Authors: Laura S. Lorenz, Jon A. Chilingerian.
Institutions: Brandeis University, Brandeis University.
The Institute of Medicine has targeted patient-centeredness as an important area of quality improvement. A major dimension of patient-centeredness is respect for patient's values, preferences, and expressed needs. Yet specific approaches to gaining this understanding and translating it to quality care in the clinical setting are lacking. From a patient perspective quality is not a simple concept but is best understood in terms of five dimensions: technical outcomes; decision-making efficiency; amenities and convenience; information and emotional support; and overall patient satisfaction. Failure to consider quality from this five-pronged perspective results in a focus on medical outcomes, without considering the processes central to quality from the patient's perspective and vital to achieving good outcomes. In this paper, we argue for applying the concept of fair process in clinical settings. Fair process involves using a collaborative approach to exploring diagnostic issues and treatments with patients, explaining the rationale for decisions, setting expectations about roles and responsibilities, and implementing a core plan and ongoing evaluation. Fair process opens the door to bringing patient expertise into the clinical setting and the work of developing health care goals and strategies. This paper provides a step by step illustration of an innovative visual approach, called photovoice or photo-elicitation, to achieve fair process in clinical work with acquired brain injury survivors and others living with chronic health conditions. Applying this visual tool and methodology in the clinical setting will enhance patient-provider communication; engage patients as partners in identifying challenges, strengths, goals, and strategies; and support evaluation of progress over time. Asking patients to bring visuals of their lives into the clinical interaction can help to illuminate gaps in clinical knowledge, forge better therapeutic relationships with patients living with chronic conditions such as brain injury, and identify patient-centered goals and possibilities for healing. The process illustrated here can be used by clinicians, (primary care physicians, rehabilitation therapists, neurologists, neuropsychologists, psychologists, and others) working with people living with chronic conditions such as acquired brain injury, mental illness, physical disabilities, HIV/AIDS, substance abuse, or post-traumatic stress, and by leaders of support groups for the types of patients described above and their family members or caregivers.
Medicine, Issue 48, person-centered care, participatory visual methods, photovoice, photo-elicitation, narrative medicine, acquired brain injury, disability, rehabilitation, palliative care
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Play Button
The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress
Authors: Jaap M. Koolhaas, Caroline M. Coppens, Sietse F. de Boer, Bauke Buwalda, Peter Meerlo, Paul J.A. Timmermans.
Institutions: University Groningen, Radboud University Nijmegen.
This video publication explains in detail the experimental protocol of the resident-intruder paradigm in rats. This test is a standardized method to measure offensive aggression and defensive behavior in a semi natural setting. The most important behavioral elements performed by the resident and the intruder are demonstrated in the video and illustrated using artistic drawings. The use of the resident intruder paradigm for acute and chronic social stress experiments is explained as well. Finally, some brief tests and criteria are presented to distinguish aggression from its more violent and pathological forms.
Behavior, Issue 77, Neuroscience, Medicine, Anatomy, Physiology, Genetics, Basic Protocols, Psychology, offensive aggression, defensive behavior, aggressive behavior, pathological, violence, social stress, rat, Wistar rat, animal model
Play Button
Studying Aggression in Drosophila (fruit flies)
Authors: Sibu Mundiyanapurath, Sarah Certel, Edward A. Kravitz.
Institutions: Harvard Medical School.
Aggression is an innate behavior that evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, hormonal and environmental factors. In many organisms, aggression is critical to survival but controlling and suppressing aggression in distinct contexts also has become increasingly important. In recent years, invertebrates have become increasingly useful as model systems for investigating the genetic and systems biological basis of complex social behavior. This is in part due to the diverse repertoire of behaviors exhibited by these organisms. In the accompanying video, we outline a method for analyzing aggression in Drosophila whose design encompasses important eco-ethological constraints. Details include steps for: making a fighting chamber; isolating and painting flies; adding flies to the fight chamber; and video taping fights. This approach is currently being used to identify candidate genes important in aggression and in elaborating the neuronal circuitry that underlies the output of aggression and other social behaviors.
Neuroscience, Issue 2, Drosophila, behavior
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.