JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional ?7 AChRs.
PUBLISHED: 01-01-2013
Functional ?7 nicotinic acetylcholine receptors (AChRs) do not assemble efficiently in cells transfected with ?7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of ?7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA) and valproic acid (VPA) greatly increase the amount of functional ?7 AChRs produced in a cell line expressing both ?7 and RIC-3. Increased ?7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase ?7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses ?7 AChRs. VPA increases expression of endogenous ?7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of ?7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human ?7 AChRs for drug selection and characterization and possibly to increase ?7 expression in vivo.
Authors: Patrick J. M. Murphy, Hannah R. Franklin, Nathan W. Furukawa.
Published: 09-21-2011
Hsp90 is an essential and highly abundant molecular chaperone protein that has been found to regulate more than 150 eukaryotic signaling proteins, including transcription factors (e.g. nuclear receptors, p53) and protein kinases (e.g. Src, Raf, Akt kinase) involved in cell cycling, tumorigenesis, apoptosis, and multiple eukaryotic signaling pathways 1,2. Of these many 'client' proteins for hsp90, the assembly of steroid receptor•hsp90 complexes is the best defined (Figure 1). We present here an adaptable glucocorticoid receptor (GR) immunoprecipitation assay and in vitro GR•hsp90 reconstitution method that may be readily used to probe eukaryotic hsp90 functional activity, hsp90-mediated steroid receptor ligand binding, and molecular chaperone cofactor requirements. For example, this assay can be used to test hsp90 cofactor requirements and the effects of adding exogenous compounds to the reconstitution process. The GR has been a particularly useful system for studying hsp90 because the receptor must be bound to hsp90 to have an open ligand binding cleft that is accessible to steroid 3. Endogenous, unliganded GR is present in the cytoplasm of mammalian cells noncovalently bound to hsp90. As found in the endogenous GR•hsp90 heterocomplex, the GR ligand binding cleft is open and capable of binding steroid. If hsp90 dissociates from the GR or if its function is inhibited, the receptor is unable to bind steroid and requires reconstitution of the GR•hsp90 heterocomplex before steroid binding activity is restored 4 . GR can be immunoprecipitated from cell cytosol using a monoclonal antibody, and proteins such as hsp90 complexed to the GR can be assayed by western blot. Steroid binding activity of the immunoprecipitated GR can be determined by incubating the immunopellet with [3H]steroid. Previous experiments have shown hsp90-mediated opening of the GR ligand binding cleft requires hsp70, a second molecular chaperone also essential for eukaryotic cell viability. Biochemical activity of hsp90 and hsp70 are catalyzed by co-chaperone proteins Hop, hsp40, and p23 5. A multiprotein chaperone machinery containing hsp90, hsp70, Hop, and hsp40 are endogenously present in eukaryotic cell cytoplasm, and reticulocyte lysate provides a chaperone-rich protein source 6. In the method presented, GR is immunoadsorbed from cell cytosol and stripped of the endogenous hsp90/hsp70 chaperone machinery using mild salt conditions. The salt-stripped GR is then incubated with reticulocyte lysate, ATP, and K+, which results in the reconstitution of the GR•hsp90 heterocomplex and reactivation of steroid binding activity 7. This method can be utilized to test the effects of various chaperone cofactors, novel proteins, and experimental hsp90 or GR inhibitors in order to determine their functional significance on hsp90-mediated steroid binding 8-11.
22 Related JoVE Articles!
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Analyzing Protein Dynamics Using Hydrogen Exchange Mass Spectrometry
Authors: Nikolai Hentze, Matthias P. Mayer.
Institutions: University of Heidelberg.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
Chemistry, Issue 81, Molecular Chaperones, mass spectrometers, Amino Acids, Peptides, Proteins, Enzymes, Coenzymes, Protein dynamics, conformational changes, allostery, protein folding, secondary structure, mass spectrometry
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
Monitoring the Assembly of a Secreted Bacterial Virulence Factor Using Site-specific Crosslinking
Authors: Olga Pavlova, Raffaele Ieva, Harris D Bernstein.
Institutions: National Institutes of Health.
This article describes a method to detect and analyze dynamic interactions between a protein of interest and other factors in vivo. Our method is based on the amber suppression technology that was originally developed by Peter Schultz and colleagues1. An amber mutation is first introduced at a specific codon of the gene encoding the protein of interest. The amber mutant is then expressed in E. coli together with genes encoding an amber suppressor tRNA and an amino acyl-tRNA synthetase derived from Methanococcus jannaschii. Using this system, the photo activatable amino acid analog p-benzoylphenylalanine (Bpa) is incorporated at the amber codon. Cells are then irradiated with ultraviolet light to covalently link the Bpa residue to proteins that are located within 3-8 Å. Photocrosslinking is performed in combination with pulse-chase labeling and immunoprecipitation of the protein of interest in order to monitor changes in protein-protein interactions that occur over a time scale of seconds to minutes. We optimized the procedure to study the assembly of a bacterial virulence factor that consists of two independent domains, a domain that is integrated into the outer membrane and a domain that is translocated into the extracellular space, but the method can be used to study many different assembly processes and biological pathways in both prokaryotic and eukaryotic cells. In principle interacting factors and even specific residues of interacting factors that bind to a protein of interest can be identified by mass spectrometry.
Immunology, Issue 82, Autotransporters, Bam complex, Molecular chaperones, protein-protein interactions, Site-specific photocrosslinking
Play Button
Drug-induced Sensitization of Adenylyl Cyclase: Assay Streamlining and Miniaturization for Small Molecule and siRNA Screening Applications
Authors: Jason M. Conley, Tarsis F. Brust, Ruqiang Xu, Kevin D. Burris, Val J. Watts.
Institutions: Purdue University, Eli Lilly and Company.
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Bioengineering, Issue 83, adenylyl cyclase, cAMP, heterologous sensitization, superactivation, D2 dopamine, μ opioid, siRNA
Play Button
Using an α-Bungarotoxin Binding Site Tag to Study GABA A Receptor Membrane Localization and Trafficking
Authors: Megan L. Brady, Charles E. Moon, Tija C. Jacob.
Institutions: University of Pittsburgh School of Medicine.
It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAAR), exhibit highly dynamic trafficking and cell surface mobility1-7. To study receptor cell surface localization and endocytosis, the technique described here combines the use of fluorescent α-bungarotoxin with cells expressing constructs containing an α-bungarotoxin (Bgt) binding site (BBS). The BBS (WRYYESSLEPYPD) is based on the α subunit of the muscle nicotinic acetylcholine receptor, which binds Bgt with high affinity8,9. Incorporation of the BBS site allows surface localization and measurements of receptor insertion or removal with application of exogenous fluorescent Bgt, as previously described in the tracking of GABAA and metabotropic GABAB receptors2,10. In addition to the BBS site, we inserted a pH-sensitive GFP (pHGFP11) between amino acids 4 and 5 of the mature GABAAR subunit by standard molecular biology and PCR cloning strategies (see Figure 1)12. The BBS is 3' of the pH-sensitive GFP reporter, separated by a 13-amino acid alanine/proline linker. For trafficking studies described in this publication that are based on fixed samples, the pHGFP serves as a reporter of total tagged GABAAR subunit protein levels, allowing normalization of the Bgt labeled receptor population to total receptor population. This minimizes cell to cell Bgt staining signal variability resulting from higher or lower baseline expression of the tagged GABAAR subunits. Furthermore the pHGFP tag enables easy identification of construct expressing cells for live or fixed imaging experiments.
Neuroscience, Issue 85, α-bungarotoxin, binding site, endocytosis, immunostaining, rodent hippocampal neurons, receptor, trafficking, plasma membrane
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (, our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
Play Button
Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay
Authors: Jelle Caers, Katleen Peymen, Nick Suetens, Liesbet Temmerman, Tom Janssen, Liliane Schoofs, Isabel Beets.
Institutions: KU Leuven.
For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to handle and have proven their efficacy throughout the years in receptor deorphanization assays. However, optimization of the assay for specific receptors may remain necessary.
Cellular Biology, Issue 89, G protein-coupled receptor (GPCR), calcium mobilization assay, reverse pharmacology, deorphanization, cellular expression system, HEK293T, Fluo-4, FlexStation
Play Button
Generation and Purification of Human INO80 Chromatin Remodeling Complexes and Subcomplexes
Authors: Lu Chen, Soon-Keat Ooi, Ronald C. Conaway, Joan W. Conaway.
Institutions: Stowers Institute for Medical Research, Kansas University Medical Center.
INO80 chromatin remodeling complexes regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Human INO80 complexes consist of 14 protein subunits including Ino80, a SNF2-like ATPase, which serves both as the catalytic subunit and the scaffold for assembly of the complexes. Functions of the other subunits and the mechanisms by which they contribute to the INO80 complex's chromatin remodeling activity remain poorly understood, in part due to the challenge of generating INO80 subassemblies in human cells or heterologous expression systems. This JOVE protocol describes a procedure that allows purification of human INO80 chromatin remodeling subcomplexes that are lacking a subunit or a subset of subunits. N-terminally FLAG epitope tagged Ino80 cDNA are stably introduced into human embryonic kidney (HEK) 293 cell lines using Flp-mediated recombination. In the event that a subset of subunits of the INO80 complex is to be deleted, one expresses instead mutant Ino80 proteins that lack the platform needed for assembly of those subunits. In the event an individual subunit is to be depleted, one transfects siRNAs targeting this subunit into an HEK 293 cell line stably expressing FLAG tagged Ino80 ATPase. Nuclear extracts are prepared, and FLAG immunoprecipitation is performed to enrich protein fractions containing Ino80 derivatives. The compositions of purified INO80 subcomplexes can then be analyzed using methods such as immunoblotting, silver staining, and mass spectrometry. The INO80 and INO80 subcomplexes generated according to this protocol can be further analyzed using various biochemical assays, which are described in the accompanying JOVE protocol. The methods described here can be adapted for studies of the structural and functional properties of any mammalian multi-subunit chromatin remodeling and modifying complexes.
Biochemistry, Issue 92, chromatin remodeling, INO80, SNF2 family ATPase, structure-function, enzyme purification
Play Button
Coupled Assays for Monitoring Protein Refolding in Saccharomyces cerevisiae
Authors: Jennifer L. Abrams, Kevin A. Morano.
Institutions: University of Texas Medical School.
Proteostasis, defined as the combined processes of protein folding/biogenesis, refolding/repair, and degradation, is a delicate cellular balance that must be maintained to avoid deleterious consequences 1. External or internal factors that disrupt this balance can lead to protein aggregation, toxicity and cell death. In humans this is a major contributing factor to the symptoms associated with neurodegenerative disorders such as Huntington's, Parkinson's, and Alzheimer's diseases 10. It is therefore essential that the proteins involved in maintenance of proteostasis be identified in order to develop treatments for these debilitating diseases. This article describes techniques for monitoring in vivo protein folding at near-real time resolution using the model protein firefly luciferase fused to green fluorescent protein (FFL-GFP). FFL-GFP is a unique model chimeric protein as the FFL moiety is extremely sensitive to stress-induced misfolding and aggregation, which inactivates the enzyme 12. Luciferase activity is monitored using an enzymatic assay, and the GFP moiety provides a method of visualizing soluble or aggregated FFL using automated microscopy. These coupled methods incorporate two parallel and technically independent approaches to analyze both refolding and functional reactivation of an enzyme after stress. Activity recovery can be directly correlated with kinetics of disaggregation and re-solubilization to better understand how protein quality control factors such as protein chaperones collaborate to perform these functions. In addition, gene deletions or mutations can be used to test contributions of specific proteins or protein subunits to this process. In this article we examine the contributions of the protein disaggregase Hsp104 13, known to partner with the Hsp40/70/nucleotide exchange factor (NEF) refolding system 5, to protein refolding to validate this approach.
Genetics, Issue 77, Molecular Biology, Microbiology, Cellular Biology, Biochemistry, Bioengineering, Biomedical Engineering, Proteins, Saccharomyces cerevisiae, Protein Folding, yeast, protein, chaperone, firefly luciferase, GFP, yeast, plasmid, assay, microscopy
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
Play Button
Morris Water Maze Test for Learning and Memory Deficits in Alzheimer's Disease Model Mice
Authors: Kelley Bromley-Brits, Yu Deng, Weihong Song.
Institutions: University of British Columbia.
The Morris Water Maze (MWM) was first established by neuroscientist Richard G. Morris in 1981 in order to test hippocampal-dependent learning, including acquisition of spatial memoryand long-term spatial memory 1. The MWM is a relatively simple procedure typically consisting of six day trials, the main advantage being the differentiation between the spatial (hidden-platform) and non-spatial (visible platform) conditions 2-4. In addition, the MWM testing environment reduces odor trail interference 5. This has led the task to be used extensively in the study of the neurobiology and neuropharmacology of spatial learning and memory. The MWM plays an important role in the validation of rodent models for neurocognitive disorders such as Alzheimer’s Disease 6, 7. In this protocol we discussed the typical procedure of MWM for testing learning and memory and data analysis commonly used in Alzheimer’s disease transgenic model mice.
Neuroscience, Issue 53, Morris Water Maze, spatial memory testing, hippocampal dependent learning, Alzheimer's Disease
Play Button
Subcutaneous Administration of Muscarinic Antagonists and Triple-Immunostaining of the Levator Auris Longus Muscle in Mice
Authors: Megan Wright, Amy Kim, Young-Jin Son.
Institutions: Arcadia University, Temple University School of Medicine, Temple University School of Medicine.
Hind limb muscles of rodents, such as gastrocnemius and tibialis anterior, are frequently used for in vivo pharmacological studies of the signals essential for the formation and maintenance of mammalian NMJs. However, drug penetration into these muscles after subcutaneous or intramuscular administration is often incomplete or uneven and many NMJs can remain unaffected. Although systemic administration with devices such as mini-pumps can improve the spatiotemporal effects, the invasive nature of this approach can cause confounding inflammatory responses and/or direct muscle damage. Moreover, complete analysis of the NMJs in a hind limb muscle is challenging because it requires time-consuming serial sectioning and extensive immunostaining. The mouse LAL is a thin, flat sheet of muscle located superficially on the dorsum of the neck. It is a fast-twitch muscle that functions to move the pinna. It contains rostral and caudal portions that originate from the midline of the cranium and extend laterally to the cartilaginous portion of each pinna. The muscle is supplied by a branch of the facial nerve that projects caudally as it exits the stylomastoid foramen. We and others have found LAL to be a convenient preparation that offers advantages for the investigation of both short and long-term in vivo effects of drugs on NMJs and muscles. First, its superficial location facilitates multiple local applications of drugs under light anesthesia. Second, its thinness (2-3 layers of muscle fibers) permits visualization and analysis of almost all the NMJs within the muscle. Third, the ease of dissecting it with its nerve intact together with the pattern of its innervation permits supplementary electrophysiological analysis in vitro9,5. Last, and perhaps most importantly, a small applied volume (˜50μl) easily covers the entire muscle surface, provides a uniform and prolonged exposure of all its NMJs to the drug and eliminates the need for a systemic approach1,8.
Neuroscience, Issue 55, neuromuscular junction, immunohistochemistry, muscle, Schwann cells, acetylcholine receptors, confocal microscope
Play Button
Purification of Hsp104, a Protein Disaggregase
Authors: Elizabeth A. Sweeny, Morgan E. DeSantis, James Shorter.
Institutions: University of Pennsylvania.
Hsp104 is a hexameric AAA+ protein1 from yeast, which couples ATP hydrolysis to protein disaggregation2-10 (Fig. 1). This activity imparts two key selective advantages. First, renaturation of disordered aggregates by Hsp104 empowers yeast survival after various protein-misfolding stresses, including heat shock3,5,11,12. Second, remodeling of cross-beta amyloid fibrils by Hsp104 enables yeast to exploit myriad prions (infectious amyloids) as a reservoir of beneficial and heritable phenotypic variation13-22. Remarkably, Hsp104 directly remodels preamyloid oligomers and amyloid fibrils, including those comprised of the yeast prion proteins Sup35 and Ure223-30. This amyloid-remodeling functionality is a specialized facet of yeast Hsp104. The E. coli orthologue, ClpB, fails to remodel preamyloid oligomers or amyloid fibrils26,31,32. Hsp104 orthologues are found in all kingdoms of life except, perplexingly, animals. Indeed, whether animal cells possess any enzymatic system that couples protein disaggregation to renaturation (rather than degradation) remains unknown33-35. Thus, we and others have proposed that Hsp104 might be developed as a therapeutic agent for various neurodegenerative diseases connected with the misfolding of specific proteins into toxic preamyloid oligomers and amyloid fibrils4,7,23,36-38. There are no treatments that directly target the aggregated species associated with these diseases. Yet, Hsp104 dissolves toxic oligomers and amyloid fibrils composed of alpha-synuclein, which are connected with Parkinson's Disease23 as well as amyloid forms of PrP39. Importantly, Hsp104 reduces protein aggregation and ameliorates neurodegeneration in rodent models of Parkinson's Disease23 and Huntington's disease38. Ideally, to optimize therapy and minimize side effects, Hsp104 would be engineered and potentiated to selectively remodel specific aggregates central to the disease in question4,7. However, the limited structural and mechanistic understanding of how Hsp104 disaggregates such a diverse repertoire of aggregated structures and unrelated proteins frustrates these endeavors30,40-42. To understand the structure and mechanism of Hsp104, it is essential to study the pure protein and reconstitute its disaggregase activity with minimal components. Hsp104 is a 102kDa protein with a pI of ~5.3, which hexamerizes in the presence of ADP or ATP, or at high protein concentrations in the absence of nucleotide43-46. Here, we describe an optimized protocol for the purification of highly active, stable Hsp104 from E. coli. The use of E. coli allows simplified large-scale production and our method can be performed quickly and reliably for numerous Hsp104 variants. Our protocol increases Hsp104 purity and simplifies His6-tag removal compared to a previous purification method from E. coli47. Moreover, our protocol is more facile and convenient than two more recent protocols26,48.
Molecular Biology, Issue 55, Neuroscience, Hsp104, AAA+, disaggregase, heat shock, amyloid, prion
Play Button
Intracellular Refolding Assay
Authors: Tamara Vanessa Walther, Danilo Maddalo.
Institutions: Karlsruhe Institute of Technology.
This protocol describes a method to measure the enzymatic activity of molecular chaperones in a cell-based system and the possible effects of compounds with inhibitory/stimulating activity. Molecular chaperones are proteins involved in regulation of protein folding1 and have a crucial role in promoting cell survival upon stress insults like heat shock2, nutrient starvation and exposure to chemicals/poisons3. For this reason chaperones are found to be involved in events like tumor development, chemioresistance of cancer cells4 as well as neurodegeneration5. Design of small molecules able to inhibit or stimulate the activity of these enzymes is therefore one of the most studied strategies for cancer therapy7 and neurodegenerative disorders9. The assay here described offers the possibility to measure the refolding activity of a particular molecular chaperone and to study the effect of compounds on its activity. In this method the gene of the molecular chaperone investigated is transfected together with an expression vector encoding for the firefly luciferase gene. It has been already described that denaturated firefly luciferase can be refolded by molecular chaperones10,11. As normalizing transfection control, a vector encoding for the renilla luciferase gene is transfected. All transfections described in this protocol are performed with X-treme Gene 11 (Roche) in HEK-293 cells. In the first step, protein synthesis is inhibited by treating the cells with cycloheximide. Thereafter protein unfolding is induced by heat shock at 45°C for 30 minutes. Upon recovery at 37°C, proteins are re-folded into their active conformation and the activity of the firefly luciferase is used as read-out: the more light will be produced, the more protein will have re-gained the original conformation. Non-heat shocked cells are set as reference (100% of refolded luciferase).
Molecular Biology, Issue 59, chaperone, refolding, stress, luciferase, heat shock
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
Play Button
Purification and Aggregation of the Amyloid Precursor Protein Intracellular Domain
Authors: Amina El Ayadi, Emily S. Stieren, José M. Barral, Andres F. Oberhauser, Darren Boehning.
Institutions: University of Texas Medical Branch , University of Texas Medical Branch .
Amyloid precursor protein (APP) is a type I transmembrane protein associated with the pathogenesis of Alzheimer's disease (AD). APP is characterized by a large extracellular domain and a short cytosolic domain termed the APP intracellular domain (AICD). During maturation through the secretory pathway, APP can be cleaved by proteases termed α, β, and γ-secretases1. Sequential proteolytic cleavage of APP with β and γ-secretases leads to the production of a small proteolytic peptide, termed Aβ, which is amyloidogenic and the core constituent of senile plaques. The AICD is also liberated from the membrane after secretase processing, and through interactions with Fe65 and Tip60, can translocate to the nucleus to participate in transcription regulation of multiple target genes2,3. Protein-protein interactions involving the AICD may affect trafficking, processing, and cellular functions of holo-APP and its C-terminal fragments. We have recently shown that AICD can aggregate in vitro, and this process is inhibited by the AD-implicated molecular chaperone ubiquilin-14. Consistent with these findings, the AICD has exposed hydrophobic domains and is intrinsically disordered in vitro5,6, however it obtains stable secondary structure when bound to Fe657. We have proposed that ubiquilin-1 prevents inappropriate inter- and intramolecular interactions of AICD, preventing aggregation in vitro and in intact cells4. While most studies focus on the role of APP in the pathogenesis of AD, the role of AICD in this process is not clear. Expression of AICD has been shown to induce apoptosis8, to modulate signaling pathways9, and to regulate calcium signaling10. Over-expression of AICD and Fe65 in a transgenic mouse model induces Alzheimer's like pathology11, and recently AICD has been detected in brain lysates by western blotting when using appropriate antigen retrieval techniques12. To facilitate structural, biochemical, and biophysical studies of the AICD, we have developed a procedure to produce recombinantly large amounts of highly pure AICD protein. We further describe a method for inducing the in vitro thermal aggregation of AICD and analysis by atomic force microscopy. The methods described are useful for biochemical, biophysical, and structural characterization of the AICD and the effects of molecular chaperones on AICD aggregation.
Medicine, Issue 66, Neuroscience, Cellular Biology, Molecular Biology, Amyloid precursor protein, APP, AICD, Alzheimer's Disease, Atomic Force Microscopy, Aggregation, Ubiquilin-1, Molecular Chaperone
Play Button
Preparation of Cell-lines for Conditional Knockdown of Gene Expression and Measurement of the Knockdown Effects on E4orf4-Induced Cell Death
Authors: Anna Brestovitsky, Rakefet Sharf, Tamar Kleinberger.
Institutions: Technion - Israel Institute of Technology.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9. The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.
Genetics, Issue 68, Cellular Biology, Molecular Biology, Microbiology, Medicine, Cell death, adenovirus, E4orf4, DAPI assay, conditional knockdown, shRNA
Play Button
Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices
Authors: Staci E. Engle, Hilary J. Broderick, Ryan M. Drenan.
Institutions: Purdue University.
Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of interest is maneuvered into position near the recorded cell. An injection of pressurized air or inert nitrogen into the drug-filled pipette causes a small amount of drug solution to be ejected from the pipette onto the recorded cell. Using this method, nAChR-mediated currents are able to be resolved with millisecond accuracy. Drug application times can easily be varied, and the drug-filled pipette can be retracted and replaced with a new pipette, allowing for concentration-response curves to be created for a single neuron. Although described in the context of nAChR neurobiology, this technique should be useful for studying many types of ligand-gated ion channels or receptors in neurons from brain slices.
Neuroscience, Issue 68, Nicotinic, acetylcholine, neurotransmitter, neuron, patch clamp, brain slice, picospritzer
Play Button
Assaying Surface Expression of Chemosensory Receptors in Heterologous Cells
Authors: Sandeepa Dey, Senmiao Zhan, Hiroaki Matsunami.
Institutions: Duke University, Duke University.
The vivid world of odors is recognized by the sense of olfaction. Olfaction in mice is mediated by a repertoire of about 1200 G Protein Coupled Receptors (GPCRs) 1 that are postulated to bind volatile odorant molecules and converting the extracellular signal into an intracellular signal by coupling with G protein Gαolf. Binding of the odorants to the receptors is thought to follow a combinatorial rule, that is, one odorant may bind several receptors and one receptor may bind several odorants to varying degrees 2. Biochemical, signaling and ligand binding studies have been conveniently carried out for most GPCRs using heterologous cells. However use of heterologous cells for study of odorant receptors, was precluded for a long time since on transfection they failed to export to the surface. Saito et al have demonstrated single membrane pass Receptor Transporting Protein (RTP) family chaperones show enhanced expression in the olfactory sensory neurons and act as chaperones to traffic odorant receptors to the surface in heterologous cells, when co transfected together 3. To carry out biochemical assays for receptors using heterologous cells, one must first determine if the receptor shows robust surface expression in the cell line. This can be assayed by overexpressing the receptors with the chaperone RTP1S followed by live cell staining to fluorescently label the extracellular domain or a tag in the extracellular domain exclusively. Here we demonstrate a protocol to carry out live cell staining that can be used to detect odorant receptors on the surface of HEK293T cells conveniently. In addition, it may also be used to assay for surface expression of other chemosensory receptors or GPCRs.
Neuroscience, Issue 48, heterologous, receptors, cell, surface, staining
Play Button
DNA Transfection of Mammalian Skeletal Muscles using In Vivo Electroporation
Authors: Marino DiFranco, Marbella Quinonez, Joana Capote, Julio Vergara.
Institutions: David Geffen School of Medicine, University of California, Los Angeles.
A growing interest in cell biology is to express transgenically modified forms of essential proteins (e.g. fluorescently tagged constructs and/or mutant variants) in order to investigate their endogenous distribution and functional relevance. An interesting approach that has been implemented to fulfill this objective in fully differentiated cells is the in vivo transfection of plasmids by various methods into specific tissues such as liver1, skeletal muscle2,3, and even the brain4. We present here a detailed description of the steps that must be followed in order to efficiently transfect genetic material into fibers of the flexor digitorum brevis (FDB) and interosseus (IO) muscles of adult mice using an in vivo electroporation approach. The experimental parameters have been optimized so as to maximize the number of muscle fibers transfected while minimizing tissue damages that may impair the quality and quantity of the proteins expressed in individual fibers. We have verified that the implementation of the methodology described in this paper results in a high yield of soluble proteins, i.e. EGFP and ECFP3, calpain, FKBP12, β2a-DHPR, etc. ; structural proteins, i.e. minidystrophin and α-actinin; and membrane proteins, i.e. α1s-DHPR, RyR1, cardiac Na/Ca2+ exchanger , NaV1.4 Na channel, SERCA1, etc., when applied to FDB, IO and other muscles of mice and rats. The efficient expression of some of these proteins has been verified with biochemical3 and functional evidence5. However, by far the most common confirmatory approach used by us are standard fluorescent microscopy and 2-photon laser scanning microscopy (TPLSM), which permit to identify not only the overall expression, but also the detailed intracellular localization, of fluorescently tagged protein constructs. The method could be equally used to transfect plasmids encoding for the expression of proteins of physiological relevance (as shown here), or for interference RNA (siRNA) aiming to suppress the expression of normally expressed proteins (not tested by us yet). It should be noted that the transfection of FDB and IO muscle fibers is particularly relevant for the investigation of mammalian muscle physiology since fibers enzymatically dissociated from these muscles are currently one of the most suitable models to investigate basic mechanisms of excitability and excitation-contraction coupling under current or voltage clamp conditions2,6-8.
Cellular Biology, Issue 32, electroporation, skeletal muscle, plasmids, protein expression, mouse, two-photon microscopy, fluorescence, transgenic
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.