JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Dickkopf homolog 3 (DKK3) plays a crucial role upstream of WNT/?-CATENIN signaling for Sertoli cell mediated regulation of spermatogenesis.
PUBLISHED: 01-01-2013
Testicular Sertoli cells (Sc) are main somatic component of seminiferous tubules that govern the differentiation of germ cells (Gc) and provide them physical support. Sc are the target of follicle stimulating hormone (FSH) and testosterone (T) which are known to regulate spermatogenesis. FSH and T levels in human and sub-human male primates remain high during infancy (4-6 months post birth), similar to those during puberty. Subsequently, juvenile phase is marked with low levels of these hormones. In spite of prolonged hormonal exposure, spermatogenesis is not discerned during infancy unlike that during puberty. Situation during infancy is similar to certain idiopathic male infertility, where prolonged hormone supplementation fails to initiate spermatogenesis. In our quest to determine non hormonal causes of idiopathic infertility which may reside within the Sc, we investigated the association between spermatogenesis and Sc specific gene(s) expressed differentially during puberty and infancy. Although products of several genes may be necessary for quantitatively normal spermatogenesis, one needs to investigate their roles one by one. Differential display and real time PCR analysis revealed higher expression of a known tumor suppressor, Dickkopf homolog 3 (DKK3), by pubertal monkey Sc as compared to infant Sc. To evaluate role of DKK3 in spermatogenesis, we generated DKK3 knock down mice (DKDM) using shRNA construct targeted to DKK3. In testis of adult DKDM, expression of DKK3 mRNA and protein were significantly (p<0.05) low and was associated with elevated WNT-4/?-CATENIN activity. Elevated ?-CATENIN activity is known to restrict Sc maturation. Abundant expression of infant Sc marker, Mullerian inhibiting substance (MIS), in the testes of adult DKDM confirmed lack of Sc maturation in DKDM. Gc differentiation and fertility was severely compromised in DKDM. This is the first report of role of DKK3 in the testis and DKK3 mediated regulation of spermatogenesis via WNT-4/?-CATENIN modulation.
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Published: 01-20-2014
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
18 Related JoVE Articles!
Play Button
In Vivo Microinjection and Electroporation of Mouse Testis
Authors: Marten Michaelis, Alexander Sobczak, Joachim M. Weitzel.
Institutions: Leibniz Institute for Farm Animal Biology (FBN).
This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis. The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector pEGFP-C1, which expresses enhanced green fluorescent protein (eGFP) and also the pDsRed2-N1 vector expressing red fluorescent protein (DsRed2). Both encoded reporter genes were under the control of the human cytomegalovirus immediate-early promoter (CMV). For performing gene transfer into mouse testes, the reporter plasmid constructs are injected into testes of living mice. To that end, the testis of an anaesthetized animal is exposed and the site of microinjection is prepared. Our preferred place of injection is the efferent duct, with the ultimately connected rete testis as the anatomical transport route of the spermatozoa between the testis and the epididymis. In this way, the filling of the seminiferous tubules after microinjection is excellently managed and controlled due to the use of stained DNA solutions. After observing a sufficient filling of the testis by its colored tubule structure, the organ is electroporated. This enables the transfer of the DNA solution into the testicular cells. Following 3 days of incubation, the testis is removed and investigated under the microscope for green or red fluorescence, illustrating transfection success. Generally, this protocol can be employed for delivering DNA- or RNA- constructs into living mouse testis in order to (over)express or knock down genes, facilitating in vivo gene function analysis. Furthermore, it is suitable for studying reporter constructs or putative gene regulatory elements. Thus, the main advantages of the electroporation technique are fast performance in combination with low effort as well as the moderate technical equipment and skills required compared to alternative techniques.
Molecular Biology, Issue 90, electroporation, transfection, microinjection, testis, sperm, spermatogenesis, reproduction
Play Button
Germ Cell Transplantation and Testis Tissue Xenografting in Mice
Authors: Lin Tang, Jose Rafael Rodriguez-Sosa, Ina Dobrinski.
Institutions: University of Calgary .
Germ cell transplantation was developed by Dr. Ralph Brinster and colleagues at the University of Pennsylvania in 19941,2. These ground-breaking studies showed that microinjection of germ cells from fertile donor mice into the seminiferous tubules of infertile recipient mice results in donor-derived spermatogenesis and sperm production by the recipient animal2. The use of donor males carrying the bacterial β-galactosidase gene allowed identification of donor-derived spermatogenesis and transmission of the donor haplotype to the offspring by recipient animals1. Surprisingly, after transplantation into the lumen of the seminiferous tubules, transplanted germ cells were able to move from the luminal compartment to the basement membrane where spermatogonia are located3. It is generally accepted that only SSCs are able to colonize the niche and re-establish spermatogenesis in the recipient testis. Therefore, germ cell transplantation provides a functional approach to study the stem cell niche in the testis and to characterize putative spermatogonial stem cells. To date, germ cell transplantation is used to elucidate basic stem cell biology, to produce transgenic animals through genetic manipulation of germ cells prior to transplantation4,5, to study Sertoli cell-germ cell interaction6,7, SSC homing and colonization3,8, as well as SSC self-renewal and differentiation9,10. Germ cell transplantation is also feasible in large species11. In these, the main applications are preservation of fertility, dissemination of elite genetics in animal populations, and generation of transgenic animals as the study of spermatogenesis and SSC biology with this technique is logistically more difficult and expensive than in rodents. Transplantation of germ cells from large species into the seminiferous tubules of mice results in colonization of donor cells and spermatogonial expansion, but not in their full differentiation presumably due to incompatibility of the recipient somatic cell compartment with the germ cells from phylogenetically distant species12. An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm13. Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice14.
Developmental Biology, Issue 60, Spermatogonial stem cells (SSCs), germ cell transplantation, spermatogenesis, testis development, testis tissue xenografting
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
The Soft Agar Colony Formation Assay
Authors: Stanley Borowicz, Michelle Van Scoyk, Sreedevi Avasarala, Manoj Kumar Karuppusamy Rathinam, Jordi Tauler, Rama Kamesh Bikkavilli, Robert A. Winn.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center.
Anchorage-independent growth is the ability of transformed cells to grow independently of a solid surface, and is a hallmark of carcinogenesis. The soft agar colony formation assay is a well-established method for characterizing this capability in vitro and is considered to be one of the most stringent tests for malignant transformation in cells. This assay also allows for semi-quantitative evaluation of this capability in response to various treatment conditions. Here, we will demonstrate the soft agar colony formation assay using a murine lung carcinoma cell line, CMT167, to demonstrate the tumor suppressive effects of two members of the Wnt signaling pathway, Wnt7A and Frizzled-9 (Fzd-9). Concurrent overexpression of Wnt7a and Fzd-9 caused an inhibition of colony formation in CMT167 cells. This shows that expression of Wnt7a ligand and its Frizzled-9 receptor is sufficient to suppress tumor growth in a murine lung carcinoma model.
Cellular Biology, Issue 92, Wnt, Frizzled, Soft Agar Assay, Colony Formation Assay, tumor suppressor, lung cancer
Play Button
Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency
Authors: Jason M. O'Brien, Marc A. Beal, John D. Gingerich, Lynda Soper, George R. Douglas, Carole L. Yauk, Francesco Marchetti.
Institutions: Environmental Health Centre.
De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.
Genetics, Issue 90, sperm, spermatogonia, male germ cells, spermatogenesis, de novo mutation, OECD TG 488, transgenic rodent mutation assay, N-ethyl-N-nitrosourea, genetic toxicology
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children&#39;s Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
Play Button
Efficient Production and Purification of Recombinant Murine Kindlin-3 from Insect Cells for Biophysical Studies
Authors: Luke A. Yates, Robert J. C. Gilbert.
Institutions: University of Oxford.
Kindlins are essential coactivators, with talin, of the cell surface receptors integrins and also participate in integrin outside-in signalling, and the control of gene transcription in the cell nucleus. The kindlins are ~75 kDa multidomain proteins and bind to an NPxY motif and upstream T/S cluster of the integrin β-subunit cytoplasmic tail. The hematopoietically-important kindlin isoform, kindlin-3, is critical for platelet aggregation during thrombus formation, leukocyte rolling in response to infection and inflammation and osteoclast podocyte formation in bone resorption. Kindlin-3's role in these processes has resulted in extensive cellular and physiological studies. However, there is a need for an efficient method of acquiring high quality milligram quantities of the protein for further studies. We have developed a protocol, here described, for the efficient expression and purification of recombinant murine kindlin-3 by use of a baculovirus-driven expression system in Sf9 cells yielding sufficient amounts of high purity full-length protein to allow its biophysical characterization. The same approach could be taken in the study of the other mammalian kindlin isoforms.
Virology, Issue 85, Heterologous protein expression, insect cells, Spodoptera frugiperda, baculovirus, protein purification, kindlin, cell adhesion
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Imaging Centrosomes in Fly Testes
Authors: Marcus L. Basiri, Stephanie Blachon, Yiu-Cheung Frederick Chim, Tomer Avidor-Reiss.
Institutions: University of Toledo.
Centrosomes are conserved microtubule-based organelles whose structure and function change dramatically throughout the cell cycle and cell differentiation. Centrosomes are essential to determine the cell division axis during mitosis and to nucleate cilia during interphase. The identity of the proteins that mediate these dynamic changes remains only partially known, and the function of many of the proteins that have been implicated in these processes is still rudimentary. Recent work has shown that Drosophila spermatogenesis provides a powerful system to identify new proteins critical for centrosome function and formation as well as to gain insight into the particular function of known players in centrosome-related processes. Drosophila is an established genetic model organism where mutants in centrosomal genes can be readily obtained and easily analyzed. Furthermore, recent advances in the sensitivity and resolution of light microscopy and the development of robust genetically tagged centrosomal markers have transformed the ability to use Drosophila testes as a simple and accessible model system to study centrosomes. This paper describes the use of genetically-tagged centrosomal markers to perform genetic screens for new centrosomal mutants and to gain insight into the specific function of newly identified genes.
Developmental Biology, Issue 79, biology (general), genetics (animal and plant), animal biology, animal models, Life Sciences (General), Centrosome, Spermatogenesis, Spermiogenesis, Drosophila, Centriole, Cilium, Mitosis, Meiosis
Play Button
Separation of Spermatogenic Cell Types Using STA-PUT Velocity Sedimentation
Authors: Jessica M Bryant, Mirella L Meyer-Ficca, Vanessa M Dang, Shelley L Berger, Ralph G Meyer.
Institutions: University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types - both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa) - studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells - in this case, from the testes - through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 108 cells/spermatogenic cell type from a starting population of 7-8 x 108 cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.
Cellular Biology, Issue 80, Developmental Biology, Spermatogenesis, STA-PUT, cell separation, Spermatogenesis, spermatids, spermatocytes, spermatogonia, sperm, velocity sedimentation
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
Play Button
In vitro Organoid Culture of Primary Mouse Colon Tumors
Authors: Xiang Xue, Yatrik M. Shah.
Institutions: University of Michigan , University of Michigan .
Several human and murine colon cancer cell lines have been established, physiologic integrity of colon tumors such as multiple cell layers, basal-apical polarity, ability to differentiate, and anoikis are not maintained in colon cancer derived cell lines. The present study demonstrates a method for culturing primary mouse colon tumor organoids adapted from Sato T et al. 1, which retains important physiologic features of colon tumors. This method consists of mouse colon tumor tissue collection, adjacent normal colon epithelium dissociation, colon tumor cells digestion into single cells, embedding colon tumor cells into matrigel, and selective culture based on the principle that tumor cells maintain growth on limiting nutrient conditions compared to normal epithelial cells. The primary tumor organoids if isolated from genetically modified mice provide a very useful system to assess tumor autonomous function of specific genes. Moreover, the tumor organoids are amenable to genetic manipulation by virus meditated gene delivery; therefore signaling pathways involved in the colon tumorigenesis could also be extensively investigated by overexpression or knockdown. Primary tumor organoids culture provides a physiologic relevant and feasible means to study the mechanisms and therapeutic modalities for colon tumorigenesis.
Cancer Biology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Genetics, Oncology, Surgery, Organoids, Tumor Cells, Cultured Colonic Neoplasms, Primary Cell Culture, Colon tumor, chelation, collagenase, matrigel, organoid, EGF, colon cancer, cancer, tumor, cell, isolation, immunohistochemistry, mouse, animal model
Play Button
Simple and Efficient Technique for the Preparation of Testicular Cell Suspensions
Authors: Rosana Rodríguez-Casuriaga, Gustavo A. Folle, Federico Santiñaque, Beatriz López-Carro, Adriana Geisinger.
Institutions: Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Instituto de Investigaciones Biológicas Clemente Estable, Universidad de la República.
Mammalian testes are very complex organs that contain over 30 different cell types, including somatic testicular cells and different stages of germline cells. This heterogeneity is an important drawback concerning the study of the bases of mammalian spermatogenesis, as pure or enriched cell populations in certain stages of sperm development are needed for most molecular analyses1. Various strategies such as Staput2,3, centrifugal elutriation1, and flow cytometry (FC)4,5 have been employed to obtain enriched or purified testicular cell populations in order to enable differential gene expression studies. It is required that cells are in suspension for most enrichment/ purification approaches. Ideally, the cell suspension will be representative of the original tissue, have a high proportion of viable cells and few multinucleates - which tend to form because of the syncytial nature of the seminiferous epithelium6,7 - and lack cell clumps1 . Previous reports had evidenced that testicular cell suspensions prepared by an exclusively mechanical method clumped more easily than trypsinized ones1 . On the other hand, enzymatic treatments with RNAses and/or disaggregating enzymes like trypsin and collagenase lead to specific macromolecules degradation, which is undesirable for certain downstream applications. The ideal process should be as short as possible and involve minimal manipulation, so as to achieve a good preservation of macromolecules of interest such as mRNAs. Current protocols for the preparation of cell suspensions from solid tissues are usually time-consuming, highly operator-dependent, and may selectively damage certain cell types1,8 . The protocol presented here combines the advantages of a highly reproducible and extremely brief mechanical disaggregation with the absence of enzymatic treatment, leading to good quality cell suspensions that can be used for flow cytometric analysis and sorting4, and ulterior gene expression studies9 .
Cellular Biology, Issue 78, Medicine, Biomedical Engineering, Anatomy, Physiology, Cell Separation, Flow Cytometry, Cytological Techniques, Meiosis, Spermatogenesis, Cell Biology, Flow cytometry, FACS, testis, meiosis, cell suspension, rodent, cell culture, animal model
Play Button
Serial Enrichment of Spermatogonial Stem and Progenitor Cells (SSCs) in Culture for Derivation of Long-term Adult Mouse SSC Lines
Authors: Laura A. Martin, Marco Seandel.
Institutions: Weill Cornell Medical College .
Spermatogonial stem and progenitor cells (SSCs) of the testis represent a classic example of adult mammalian stem cells and preserve fertility for nearly the lifetime of the animal. While the precise mechanisms that govern self-renewal and differentiation in vivo are challenging to study, various systems have been developed previously to propagate murine SSCs in vitro using a combination of specialized culture media and feeder cells1-3. Most in vitro forays into the biology of SSCs have derived cell lines from neonates, possibly due to the difficulty in obtaining adult cell lines4. However, the testis continues to mature up until ~5 weeks of age in most mouse strains. In the early post-natal period, dramatic changes occur in the architecture of the testis and in the biology of both somatic and spermatogenic cells, including alterations in expression levels of numerous stem cell-related genes. Therefore, neonatally-derived SSC lines may not fully recapitulate the biology of adult SSCs that persist after the adult testis has reached a steady state. Several factors have hindered the production of adult SSC lines historically. First, the proportion of functional stem cells may decrease during adulthood, either due to intrinsic or extrinsic factors5,6. Furthermore, as with other adult stem cells, it has been difficult to enrich SSCs sufficiently from total adult testicular cells without using a combination of immunoselection or other sorting strategies7. Commonly employed strategies include the use of cryptorchid mice as a source of donor cells due to a higher ratio of stem cells to other cell types8. Based on the hypothesis that removal of somatic cells from the initial culture disrupts interactions with the stem cell niche that are essential for SSC survival, we previously developed methods to derive adult lines that do not require immunoselection or cryptorchid donors but rather employ serial enrichment of SSCs in culture, referred to hereafter as SESC2,3. The method described below entails a simple procedure for deriving adult SSC lines by dissociating adult donor seminiferous tubules, followed by plating of cells on feeders comprised of a testicular stromal cell line (JK1)3. Through serial passaging, strongly adherent, contaminating non-germ cells are depleted from the culture with concomitant enrichment of SSCs. Cultures produced in this manner contain a mixture of spermatogonia at different stages of differentiation, which contain SSCs, based on long-term self renewal capability. The crux of the SESC method is that it enables SSCs to make the difficult transition from self-renewal in vivo to long-term self-renewal in vitro in a radically different microenvironment, produces long-term SSC lines, free of contaminating somatic cells, and thereby enables subsequent experimental manipulation of SSCs.
Stem Cell Biology, Issue 72, Molecular Biology, Cellular Biology, Medicine, Genetics, Developmental Biology, Anatomy, Surgery, Spermatogonial Stem cells, Stem cells, feeder cells, germ cells, testis, cell culture, microenvironment, stem cell niche, progenitor cells, mice, transgenic mice, animal model
Play Button
Dissection of Organs from the Adult Zebrafish
Authors: Tripti Gupta, Mary C. Mullins.
Institutions: University of Pennsylvania-School of Medicine.
Over the last 20 years, the zebrafish has become a powerful model organism for understanding vertebrate development and disease. Although experimental analysis of the embryo and larva is extensive and the morphology has been well documented, descriptions of adult zebrafish anatomy and studies of development of the adult structures and organs, together with techniques for working with adults are lacking. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location during the larval to adult transition. Externally, the transparent larva develops its characteristic adult striped pigment pattern and paired pelvic fins, while internally, the organs undergo massive growth and remodeling. In addition, the bipotential gonad primordium develops into either testis or ovary. This protocol identifies many of the organs of the adult and demonstrates methods for dissection of the brain, gonads, gastrointestinal system, heart, and kidney of the adult zebrafish. The dissected organs can be used for in situ hybridization, immunohistochemistry, histology, RNA extraction, protein analysis, and other molecular techniques. This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems.
Developmental Biology, Issue 37, adult, zebrafish, organs, dissection, anatomy
Play Button
Retrograde Labeling of Retinal Ganglion Cells by Application of Fluoro-Gold on the Surface of Superior Colliculus
Authors: Kin Chiu, Wui-Man Lau, Sze-chun Yeung, Raymond Chuen-Chung Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Retinal ganglion cell (RGC) counting is essential to evaluate retinal degeneration especially in glaucoma. Reliable RGC labeling is fundamental for evaluating the effects of any treatment. In rat, about 98% of RGCs is known to project to the contralateral superior colliculus (SC) (Forrester and Peters, 1967). Applying fluoro-gold (FG) on the surface of SC can label almost all the RGCs, so that we can focus on this most vulnerable retinal neuron in glaucoma. FG is taken up by the axon terminals of retinal ganglion cells and bilaterally transported retrogradely to its somas in the retina. Compare with retrograde labeling of RGC by putting FG at stump of transected optic nerve for 2 days, the interference of RGC survival is minimized. Compare with cresyl violet staining that stains RGCs, amacrine cells and endothelium of the blood vessel in the retinal ganglion cell layer, this labeling method is more specific to the RGC. This video describes the method of retrograde labeling of RGC by applying FG on the surface of SC. The surgical procedures include drilling the skull; aspirating the cortex to expose the SC and applying gelatin sponge over entire dorsal surface of SC are shown. Useful tips for avoiding massive intracranial bleeding and aspiration of the SC have been given.
Neuroscience, Issue 16, Retrograde labeling, retinal ganglion cells, ophthalmology research, superior colliculus, experimental glaucoma
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.